Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Genet ; 15: 1344081, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119577

RESUMEN

Coronary artery disease (CAD) is still a leading cause of death worldwide despite the extensive research and the considerable progresses made through the years. As other cardiovascular diseases, CAD is the result of the complex interaction between genetic variants and environmental factors. Currently identified genetic loci associated to CAD revealed the contribution of multiple molecular pathways to its pathogenesis, suggesting the need for a systemic approach to understand the role of genetic determinants. In this study we wanted to investigate how GWAS variants associated to CAD interact with each other and with nearby genes in the context of the coronary artery molecular interactome. GWAS variants associated to CAD were selected from GWAS Catalog, then, a tissue-specific interactome was constructed integrating protein-protein interactions (PPI) from multiple public repositories and computationally inferred co-expression relationships. To focus on the part of the network most relevant for CAD, we selected the interactions connecting the genes carrying a variant associated to the disease. A functional enrichment analysis conducted on the subnetwork revealed that genes carrying genetic variants associated to CAD closely interact with genes related to relevant biological processes, such as extracellular matrix organization, lipoprotein clearance, arterial morphology and inflammatory response. These results confirm that the identified subnetwork reflects the molecular pathways altered in CAD and intercepted by the selected variants. Interestingly, the most connected nodes of the network included amyloid beta precursor protein (APP) and huntingtin (HTT), both implicated in neurodegenerative disorders. In recent years the interest in investigating the common processes between cardiovascular diseases and neurodegenerative disorders is increasing, with growing evidence of a link between CAD and Alzheimer's disease. The results obtained in this work support the association between such apparently unrelated diseases and highlight the necessity of a systems biology approach to better elucidate shared pathological mechanisms.

3.
Sci Rep ; 14(1): 2467, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291083

RESUMEN

The transcription factors TTF1/NKX2-1 and ΔNp63/p40 are the counterposed molecular markers associated with the main Non-Small Cell Lung Cancer subtypes: TTF1 for adenocarcinoma, p40 for squamous cell carcinoma. Although they generally display a mutually exclusive expression, some exceptions exist simultaneously lacking or (very rarely) expressing both markers, either pattern being associated to poor prognosis. Hence, we quantitatively analyzed the relationship between their coordinated activity and prognosis. By analyzing the respective downstream transcriptional programs of the two genes, we defined a simple quantitative index summarizing the amount of mutual exclusivity between their activities, called Mean Absolute Activity (MAA). Systematic analysis of the MAA index in a dataset of 1018 NSCLC samples replicated on a validation dataset of 275 showed that the loss of imbalance between TTF-1 and p40 corresponds to a steady, progressive reduction in both overall and recurrence-free survival. Coherently, samples correspondent to more balanced activities were enriched for pathways related to increased malignancy and invasiveness. Importantly, multivariate analysis showed that the prognostic significance of the proposed index MAA is independent of other clinical variables including stage, sex, age and smoke exposure. These results hold irrespectively of tumor morphology across NSCLC subtypes, providing a unifying description of different expression patterns.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Adenocarcinoma/patología , Pronóstico , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al ADN/genética
4.
JTO Clin Res Rep ; 2(11): 100222, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34746884

RESUMEN

Introduction: Double occurrence of TTF1 and ΔNp63/p40 (henceforth, p40) within the same individual cells is exceedingly rare in lung cancer. Little is known on their biological and clinical implications. Methods: Two index cases immunoreactive for both p40 and TTF1 and nine tumors selected from The Cancer Genome Atlas (TCGA) according to the mRNA levels of the two relevant genes entered the study. Results: The two index cases were peripherally located, poorly differentiated, and behaviorally unfavorable carcinomas, which shared widespread p40 and TTF1 decoration within the same individual tumor cells. They also retained SMARCA2 and SMARCA4 expression, while variably stained for p53, cytokeratin 5, and programmed death-ligand 1. A subset of basal cells p40+/TTF1+ could be found in normal distal airways. Biphenotypic glandular and squamous differentiation was unveiled by electron microscopy, along with EGFR, RAD51B, CCND3, or NF1 mutations and IGF1R, MYC, CCND1, or CDK2 copy number variations on next-generation sequencing analysis. The nine tumors from TCGA (0.88% of 1018 tumors) shared the same poor prognosis, clinical presentation, and challenging histology and had activated pathways of enhanced angiogenesis and epithelial-mesenchymal transition. Mutation and copy number variation profiles did not differ from the other TCGA tumors. Conclusions: Double p40+/TTF1+ lung carcinomas are aggressive and likely underrecognized non-small cell carcinomas, whose origin could reside in double-positive distal airway stem-like basal cells through either de novo-basal-like or differentiating cell mechanisms according to a model of epithelial renewal.

5.
Int J Cancer ; 145(10): 2670-2681, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30892690

RESUMEN

High-grade serous epithelial ovarian cancer (HGS-EOC) is a systemic disease, with marked intra and interpatient tumor heterogeneity. The issue of spatial and temporal heterogeneity has long been overlooked, hampering the possibility to identify those genomic alterations that persist, before and after therapy, in the genome of all tumor cells across the different anatomical districts. This knowledge is the first step to clarify those molecular determinants that characterize the tumor biology of HGS-EOC and their route toward malignancy. In our study, -omics data were generated from 79 snap frozen matched tumor biopsies, withdrawn before and after chemotherapy from 24 HGS-EOC patients, gathered together from independent cohorts. The landscape of somatic copy number alterations depicts a more homogenous and stable genomic portrait than the single nucleotide variant profile. Genomic identification of significant targets in cancer analysis identified two focal and minimal common regions (FMCRs) of amplification in the cytoband 3q26.2 (region α, 193 kb long) and 8q24.3 (region ß, 495 kb long). Analysis in two external databases confirmed regions α and ß are features of HGS-EOC. The MECOM gene is located in region α, and 15 genes are in region ß. No functional data are yet available for the genes in the ß region. In conclusion, we have identified for the first time two FMCRs of amplification in HGS-EOC, opening up a potential biological role in its etiopathogenesis.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Cromosomas Humanos Par 3/genética , Cromosomas Humanos Par 8/genética , Variaciones en el Número de Copia de ADN , Neoplasias Ováricas/genética , Biopsia , Carcinoma Epitelial de Ovario/patología , Estudios de Cohortes , Biología Computacional , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Femenino , Genómica , Humanos , Clasificación del Tumor , Neoplasias Ováricas/patología , Ovario/patología , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA