Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 7(5): e0059222, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-35993708

RESUMEN

Coastal marine macrophytes exhibit some of the highest rates of primary productivity in the world. They have been found to host a diverse set of microbes, many of which may impact the biology of their hosts through metabolisms that are unique to microbial taxa. Here, we characterized the metabolic functions of macrophyte-associated microbial communities using metagenomes collected from 2 species of kelp (Laminaria setchellii and Nereocystis luetkeana) and 3 marine angiosperms (Phyllospadix scouleri, P. serrulatus, and Zostera marina), including the rhizomes of two surfgrass species (Phyllospadix spp.), the seagrass Zostera marina, and the sediments surrounding P. scouleri and Z. marina. Using metagenomic sequencing, we describe 63 metagenome-assembled genomes (MAGs) that potentially benefit from being associated with macrophytes and may contribute to macrophyte fitness through their metabolic activity. Host-associated metagenomes contained genes for the use of dissolved organic matter from hosts and vitamin (B1, B2, B7, B12) biosynthesis in addition to a range of nitrogen and sulfur metabolisms that recycle dissolved inorganic nutrients into forms more available to the host. The rhizosphere of surfgrass and seagrass contained genes for anaerobic microbial metabolisms, including nifH genes associated with nitrogen fixation, despite residing in a well-mixed and oxygenated environment. The range of oxygen environments engineered by macrophytes likely explains the diversity of both oxidizing and reducing microbial metabolisms and contributes to the functional capabilities of microbes and their influences on carbon and nitrogen cycling in nearshore ecosystems. IMPORTANCE Kelps, seagrasses, and surfgrasses are ecosystem engineers on rocky shorelines, where they show remarkably high levels of primary production. Through analysis of their associated microbial communities, we found a variety of microbial metabolisms that may benefit the host, including nitrogen metabolisms, sulfur oxidation, and the production of B vitamins. In turn, these microbes have the genetic capabilities to assimilate the dissolved organic compounds released by their macrophyte hosts. We describe a range of oxygen environments associated with surfgrass, including low-oxygen microhabitats in their rhizomes that host genes for nitrogen fixation. The tremendous productivity of coastal seaweeds and seagrasses is likely due in part to the activities of associated microbes, and an increased understanding of these associations is needed.


Asunto(s)
Metagenoma , Microbiota , Metagenoma/genética , Rizosfera , Nitrógeno/metabolismo , Azufre/metabolismo
2.
PLoS One ; 14(4): e0216002, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31039174

RESUMEN

The Gram-positive α-hemolytic Streptococcus suis is a major pathogen in the swine industry and an emerging zoonotic agent that can cause several systemic issues in both pigs and humans. A total of 35 S. suis serotypes (SS) have been identified and genotyped into > 700 sequence types (ST) by multilocus sequence typing (MLST). Eurasian ST1 isolates are the most virulent of all S. suis SS2 strains while North American ST25 and ST28 strains display moderate to low/no virulence phenotypes, respectively. Notably, S. suis 90-1330 is an avirulent Canadian SS2-ST28 isolate producing a lantibiotic bacteriocin with potential prophylactic applications. To investigate the suitability of this strain for such purposes, we sequenced its complete genome using the Illumina and PacBio platforms. The S. suis 90-1330 bacteriocin was found encoded in a locus cargoed in what appears to be an integrative and conjugative element (ICE). This bacteriocin locus was also found to be widely distributed across several streptococcal species and in a few Staphylococcus aureus strains. Because the locus also confers protection from the bacteriocin, the potential prophylactic benefits of using this strain may prove limited due to the spread of the resistance to its effects. Furthermore, the S. suis 90-1330 genome was found to code for genes involved in blood survival, suggesting that strain may not be a benign as previously thought.


Asunto(s)
Bacteriocinas/metabolismo , Streptococcus suis/aislamiento & purificación , Streptococcus suis/metabolismo , Animales , Bacteriocinas/genética , Farmacorresistencia Bacteriana , Sitios Genéticos , Variación Genética , Genoma Bacteriano , Humanos , Viabilidad Microbiana , Profagos/genética , Streptococcus suis/genética , Streptococcus suis/patogenicidad , Porcinos , Virulencia
3.
Artículo en Inglés | MEDLINE | ID: mdl-30533886

RESUMEN

Vitreoscilla sp. strain C1 is of historical importance as the source of the first prokaryotic hemoglobin identified. Vitreoscilla spp. rely on their hemoglobin and cytochrome oxidase to grow in microaerobic environments despite their aerobic nature. To help characterize this historically relevant strain, we sequenced the complete Vitreoscilla sp. strain C1 genome.

4.
Genome Announc ; 5(25)2017 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-28642379

RESUMEN

Despite their relevance to human health, not all staphylococcal species have been characterized. As such, the potential zoonotic threats posed by uninvestigated species and their contribution to the staphylococcal pangenome are unclear. Here, we report the complete genome sequence of Staphylococcus lutrae ATCC 700373, a coagulase-positive species isolated from deceased otters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...