Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
2.
Environ Pollut ; 351: 124088, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38697250

RESUMEN

The contamination of freshwater with microplastics (MPs) has been established globally. While the analysis of MPs has predominantly involved spectroscopic methods for revealing particle numbers, the potential of employing spectroscopy for mass estimation has been underutilized. Consequently, there is a need to enhance our understanding of the mass loads of MPs and ensure the complementarity and comparability of various techniques for accurate quantification. This study presents the first comparative results on urban water samples using micro Fourier-transform infrared (µ-FTIR) imaging and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) to identify and quantify MPs in both particle numbers and mass concentration. Two sampling campaigns in summer and winter were conducted at 11 locations within the Amsterdam canal network. An advanced in-situ volume-reducing sampling pump was employed to collect MPs from the surface water within the size fraction of 10-300 µm. The analysis revealed MP concentrations within the range of 16-107 MP/m3, estimated to be 2.0-789 µg/m3 by µ-FTIR imaging and 8.5-754 µg/m3 by Py-GC-MS. The results of the two analysis techniques showed good comparability in terms of the general trends of MP abundances, with variations in polymer compositions due to the inherent inter-methodological differences. Elevated MP concentrations were observed in the city center compared to the suburban areas. In addition, seasonal differences in MP abundances were noted at the locations with high human activity.


Asunto(s)
Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Microplásticos/análisis , Países Bajos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ciudades , Agua Dulce/química
3.
Aquat Toxicol ; 265: 106743, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37931377

RESUMEN

Plastics, particularly microplastics (MPs) and nanoplastics (NPs), have been regarded as pollutants of emerging concern due to their effects on organisms and ecosystems, especially considering marine environments. However, in terms of NPs, there is still a knowledge gap regarding the effects of size and polymer on marine invertebrates, such as benthic organisms. Therefore, this study aimed to understand, regarding behavioural, physiological, and biochemical endpoints (neurotransmission, energy metabolism, antioxidant status, and oxidative damage), the effects of 50 nm waterborne polymethylmethacrylate (PMMA) NPs (0.5 to 500 µg/L) on the marine benthic polychaete Hediste diversicolor, a key species in estuarine and coastal ecosystems. Results demonstrated that worms exposed to PMMA NPs had a shorter burrowing time than control organisms. Nevertheless, worms exposed to PMMA NPs (0.5 and 500 µg/L) decreased cholinesterase activity. Energy metabolism was decreased at 50 and 500 µg/L, and glycogen content decreased at all concentrations of PMMA NPs. Enzymes related to the antioxidant defence system (superoxide dismutase and glutathione peroxidase) displayed increased activities in H. diversicolor specimens exposed to concentrations between 0.5 and 500 µg/L, which led to no damage at the cell membrane and protein levels. In this study, polychaetes also displayed a lower regenerative capacity when exposed to PMMA NPs. Overall, the data obtained in this study emphasize the potential consequences of PMMA NPs to benthic worms, particularly between 0.5 and 50 µg/L, with polychaetes exposed to 50 µg/L being the most impacted by the analysed NPs. However, since sediments are considered to be sinks and sources of plastics, further studies are needed to better understand the impacts of different sizes and polymers on marine organisms, particularly benthic species.


Asunto(s)
Poliquetos , Contaminantes Químicos del Agua , Animales , Antioxidantes/metabolismo , Polimetil Metacrilato/toxicidad , Polimetil Metacrilato/metabolismo , Microplásticos/metabolismo , Plásticos , Ecosistema , Contaminantes Químicos del Agua/toxicidad
4.
Nanomaterials (Basel) ; 13(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37110989

RESUMEN

Humans are continuously exposed to polymeric materials such as in textiles, car tires and packaging. Unfortunately, their break down products pollute our environment, leading to widespread contamination with micro- and nanoplastics (MNPs). The blood-brain barrier (BBB) is an important biological barrier that protects the brain from harmful substances. In our study we performed short term uptake studies in mice with orally administered polystyrene micro-/nanoparticles (9.55 µm, 1.14 µm, 0.293 µm). We show that nanometer sized particles-but not bigger particles-reach the brain within only 2 h after gavage. To understand the transport mechanism, we performed coarse-grained molecular dynamics simulations on the interaction of DOPC bilayers with a polystyrene nanoparticle in the presence and absence of various coronae. We found that the composition of the biomolecular corona surrounding the plastic particles was critical for passage through the BBB. Cholesterol molecules enhanced the uptake of these contaminants into the membrane of the BBB, whereas the protein model inhibited it. These opposing effects could explain the passive transport of the particles into the brain.

5.
Expo Health ; 15(1): 33-51, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873245

RESUMEN

Micro- and nanoplastics (MNPs) are recognized as emerging contaminants, especially in food, with unknown health significance. MNPs passing through the gastrointestinal tract have been brought in context with disruption of the gut microbiome. Several molecular mechanisms have been described to facilitate tissue uptake of MNPs, which then are involved in local inflammatory and immune responses. Furthermore, MNPs can act as potential transporters ("vectors") of contaminants and as chemosensitizers for toxic substances ("Trojan Horse effect"). In this review, we summarize current multidisciplinary knowledge of ingested MNPs and their potential adverse health effects. We discuss new insights into analytical and molecular modeling tools to help us better understand the local deposition and uptake of MNPs that might drive carcinogenic signaling. We present bioethical insights to basically re-consider the "culture of consumerism." Finally, we map out prominent research questions in accordance with the Sustainable Development Goals of the United Nations.

6.
Plast Reconstr Surg ; 152(6): 1191-1200, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36877628

RESUMEN

BACKGROUND: Breast implant surgery is one of the most frequently performed procedures by plastic surgeons worldwide. However, the relationship between silicone leakage and the most common complication, capsular contracture, is far from understood. This study aimed to compare Baker grade I with Baker grade IV capsules regarding their silicone content in an intradonor setting, using two previously validated imaging techniques. METHODS: Twenty-two donor-matched capsules from 11 patients experiencing unilateral complaints were included after bilateral explantation surgery. All capsules were examined using both stimulated Raman scattering (SRS) imaging and staining with modified oil red O (MORO). Evaluation was done visually for qualitative and semiquantitative assessment and automated for quantitative analysis. RESULTS: Using both SRS and MORO techniques, silicone was found in more Baker grade IV capsules (eight of 11 and 11 of 11, respectively) than in Baker grade I capsules (three of 11 and five of 11, respectively). Baker grade IV capsules also showed significantly more silicone content compared with the Baker grade I capsules. This was true for semiquantitative assessment for both SRS and MORO techniques ( P = 0.019 and P = 0.006, respectively), whereas quantitative analysis proved to be significant for MORO alone ( P = 0.026 versus P = 0.248 for SRS, respectively). CONCLUSIONS: In this study, a significant correlation between capsule silicone content and capsular contracture is shown. An extensive and continued foreign body response to silicone particles is likely to be responsible. Considering the widespread use of silicone breast implants, these results affect many women worldwide and warrant a more focused research effort. CLINICAL QUESTION/LEVEL OF EVIDENCE: Risk, III.


Asunto(s)
Implantación de Mama , Implantes de Mama , Contractura , Humanos , Femenino , Siliconas/efectos adversos , Implantes de Mama/efectos adversos , Implantación de Mama/efectos adversos , Implantación de Mama/métodos , Remoción de Dispositivos/efectos adversos , Contractura/etiología , Contractura Capsular en Implantes/etiología , Contractura Capsular en Implantes/cirugía , Geles de Silicona/efectos adversos
7.
Environ Chem Lett ; 21(3): 1787-1810, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36785620

RESUMEN

Microplastics pollution is major threat to ecosystems and is impacting abiotic and biotic components. Microplastics are diverse and highly complex contaminants that transport other contaminants and microbes. Current methods to remove microplastics include biodegradation, incineration, landfilling, and recycling. Here we review microplastics with focus on sources, toxicity, and biodegradation. We discuss the role of algae, fungi, bacteria in the biodegradation, and we present biotechnological methods to enhance degradation, e.g., gene editing tools and bioinformatics.

8.
Environ Health Perspect ; 130(9): 97006, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36129437

RESUMEN

BACKGROUND: The first evidence of micro- and nanoplastic (MNP) exposure in the human placenta is emerging. However, the toxicokinetics and toxicity of MNPs in the placenta, specifically environmentally relevant particles, remain unclear. OBJECTIVES: We examined the transport, uptake, and toxicity of pristine and experimentally weathered MNPs in nonsyncytialized and syncytialized BeWo b30 choriocarcinoma cells. METHODS: We performed untargeted chemical characterization of pristine and weathered MNPs using liquid chromatography high-resolution mass spectrometry to evaluate compositional differences following particle weathering. We investigated cellular internalization of pristine and weathered polystyrene (PS; 0.05-10µm) and high-density polyethylene (HDPE; 0-80µm) particles using high-resolution confocal imaging and three-dimensional rendering. We investigated the influence of particle coating with human plasma on the cellular transport of PS particles using a transwell setup and examined the influence of acute MNP exposure on cell viability, damage to the plasma membrane, and expression of genes involved in steroidogenesis. RESULTS: Chemical characterization of MNPs showed a significantly higher number of unique features in pristine particles in comparison with weathered particles. Size-dependent placental uptake of pristine and weathered MNPs was observed in both placental cell types after 24 h exposure. Cellular transport was limited and size-dependent and was not influenced by particle coating with human plasma. None of the MNPs affected cell viability. Damage to the plasma membrane was observed only for 0.05µm PS particles in the nonsyncytialized cells at the highest concentration tested (100µg/mL). Modest down-regulation of hsd17b1 was observed in syncytialized cells exposed to pristine MNPs. DISCUSSION: Our results suggest that pristine and weathered MNPs are internalized and translocated in placental cells in vitro. Effects on gene expression observed upon pristine PS and HDPE particle exposure warrant further examination. More in-depth investigations are needed to better understand the potential health risks of MNP and chemicals associated with them under environmentally relevant exposure scenarios. https://doi.org/10.1289/EHP10873.


Asunto(s)
Microplásticos , Poliestirenos , Supervivencia Celular , Femenino , Humanos , Placenta/metabolismo , Polietileno/metabolismo , Polietileno/farmacología , Embarazo
9.
Environ Res ; 214(Pt 2): 113764, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35803342

RESUMEN

Plastic pollution is a serious problem in aquatic systems throughout the world. Despite the increasing number of studies addressing the impact of macro- and microplastics on biota, there is still a significant knowledge gap regarding the effects of nanoplastics alone and in combination with other contaminants. Among the aquatic contaminants that may interact with nanoplastics is arsenic (As), a metalloid found in estuarine and coastal ecosystems, pernicious to benthic organisms. This study aimed to understand how a parental pre-exposure to 100 nm polystyrene nanoplastics (PS NPs) would influence the response of Hediste diversicolor to exposure to arsenic in terms of behaviour, neurotransmission, antioxidant defences and oxidative damage, and energy metabolism. The obtained data revealed an increase in burrowing time and a significant inhibition in cholinesterase activity in all polychaetes exposed to As, regardless of the pre-exposure to PS NPs. Oxidative status was altered particularly in parentally exposed organisms, with damage detected in terms of lipid peroxidation at 50 µg/L and protein carbonylation at 50 and 250 µg As/L exposed organisms when compared to control. Overall, data shows that parental pre-exposure to plastics influences the response of aquatic organisms, increasing their susceptibility to other contaminants. Thus, more studies should be performed with other environmental contaminants, to better understand the potential increased risk associated with the presence of nanoplastics to aquatic ecosystems.


Asunto(s)
Arsénico , Poliquetos , Contaminantes Químicos del Agua , Animales , Arsénico/toxicidad , Ecosistema , Microplásticos , Plásticos/toxicidad , Poliestirenos , Contaminantes Químicos del Agua/análisis
10.
Environ Int ; 163: 107199, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367073

RESUMEN

Plastic particles are ubiquitous pollutants in the living environment and food chain but no study to date has reported on the internal exposure of plastic particles in human blood. This study's goal was to develop a robust and sensitive sampling and analytical method with double shot pyrolysis - gas chromatography/mass spectrometry and apply it to measure plastic particles ≥700 nm in human whole blood from 22 healthy volunteers. Four high production volume polymers applied in plastic were identified and quantified for the first time in blood. Polyethylene terephthalate, polyethylene and polymers of styrene (a sum parameter of polystyrene, expanded polystyrene, acetonitrile butadiene styrene etc.) were the most widely encountered, followed by poly(methyl methacrylate). Polypropylene was analysed but values were under the limits of quantification. In this study of a small set of donors, the mean of the sum quantifiable concentration of plastic particles in blood was 1.6 µg/ml, showing a first measurement of the mass concentration of the polymeric component of plastic in human blood. This pioneering human biomonitoring study demonstrated that plastic particles are bioavailable for uptake into the human bloodstream. An understanding of the exposure of these substances in humans and the associated hazard of such exposure is needed to determine whether or not plastic particle exposure is a public health risk.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Humanos , Plásticos/análisis , Polímeros , Poliestirenos/análisis , Pirólisis , Contaminantes Químicos del Agua/análisis
12.
Bull Environ Contam Toxicol ; 106(2): 237-240, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33515068

RESUMEN

Plastic pollution control has been on top of the political agenda in China. In January 2020, China announced a phased ban on the production and usage of various types of single-use plastics as a solution to environmental pollution problems. However, the outbreak of COVID-19 seems to be a new obstacle to the ban on single-use plastic products. To basically satisfied the daily necessities and contain the spread of SARS-CoV-2 under the background of the regular epidemic prevention and control in China, online ordering, contactless delivery and wearing mask have become an important and feasible way of daily life. However, the unrestrained use of disposable plastic bags, lunch boxes and masks within the nationwide quarantine leads to hundreds of millions of plastics wastes every day. The potential environmental pollution caused by the use of disposable plastic products during the pandemic should arouse social concern. The Chinese government should manage environmental protection in parallel with anti-pandemic endeavors as the situation of the pandemic evolves.


Asunto(s)
COVID-19 , Pandemias , China/epidemiología , Humanos , Plásticos , SARS-CoV-2
13.
Artículo en Inglés | MEDLINE | ID: mdl-33322709

RESUMEN

Despite growing interest in the environmental impact of microplastics, a standardized characterization method is not available. We carried out a systematic analysis of reliable global data detailing the relative abundance of polymers in freshwaters and estuaries. The polymers were identified according to seven main categories: polyethylene terephthalate, polyethylene, polyvinyl chloride, polypropylene, polystyrene, polyurethane and a final category of miscellaneous plastic. The results show that microplastics comprised of polyvinyl chloride and polyurethane are significantly less abundant than would be expected based on global production, possibly due to their use. This has implications for models of microplastic release into the environment based on production and fate. When analysed by matrix (water, sediment or biota) distinct profiles were obtained for each category. Polyethylene, polypropylene and polystyrene were more abundant in sediment than in biota, while miscellaneous plastics was more frequent in biota. The data suggest that environmental sorting of microplastic particles, influenced by physical, chemical and biological processes, may play a key role in environmental impact, although partitioning among matrices based on density was not realized. The distinct profile of microplastics in biota raises an important question regarding potential selectivity in uptake by organisms, highlighting the priority for more and better-informed laboratory exposure studies.


Asunto(s)
Microplásticos , Polímeros , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Estuarios , Agua Dulce , Sedimentos Geológicos , Plásticos , Contaminantes Químicos del Agua/análisis
14.
Sci Rep ; 10(1): 10945, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616793

RESUMEN

We studied the fragmentation of conventional thermoplastic and compostable plastic items in a laboratory seawater microcosm. In the microcosm, polyurethane foams, cellulose acetate cigarette filters, and compostable polyester and polylactic acid items readily sank, whereas polyethylene air pouches, latex balloons, polystyrene foams and polypropylene cups remained afloat. Microbial biofilms dominated by Cyanobacteria, Proteobacteria, Planctomycetes and Bacteriodetes grew on the plastics, and caused some of the polyethylene items to sink to the bottom. Electrical resistances (ER) of plastic items decreased as function of time, an indication that seawater had penetrated into microscopic crevices in the plastic that had developed over time. Rate constants for ER decrease in polyethylene items in the microcosm were similar to tensile elongation decrease of polyethylene sheets floating in sea, measured previously by others. Weight loss of plastic items was ≤ 1% per year for polyethylene, polystyrene and polypropylene, 3-5% for latex, polyethylene terephthalate and polyurethane, 15% for cellulose acetate, and 7-27% for polyester and polylactic acid compostable bags. The formation of microplastics observed in the microcosm was responsible for at least part of the weight loss. This study emphasizes the need to obtain experimental data on plastic litter degradation under conditions that are realistic for marine environments.

15.
Chemosphere ; 253: 126710, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32464757

RESUMEN

The occurrence of bioactive compounds and contaminant-associated effects was assessed by means of in vivo and in vitro assays using different extractable fractions of surface sediments from a contaminated coastal lagoon (Mar Menor, SE Spain). Sediment elutriates and clean seawater, previously exposed to whole sediment, were used for assessing the in vivo toxicity on embryo development of the sea urchin Paracentrotus lividus. Agonist and antagonist activities relating to estrogen and androgen receptors and agonist activities on aryl hydrocarbon receptor (expressed as ethoxyresorufin-O-deethylase (EROD) activities) were investigated in sediment extracts by using HER-Luc, AR-EcoScreenTM and fibroblast-like RTG-2 cell lines. Embryotoxicity effects were greater for sediment elutriates than those incubated in sediment-water interphase, implying that diffusion of bioactive chemicals can occur from sediments to sea water column, favoured by sediment disturbance events. In vitro results show the occurrence in extracts of compounds with estrogen antagonism, androgen antagonism and dioxin-like activities. Multidimensional scaling analysis classified the sampling sites into four sub-clusters according to their chemical-physical and biological similarities, relating in vitro bioactivity with the total organic carbon and known organic chemical load, with particular reference to total sum of PAHs, PCB 180, p,p-DDE and terbuthylazine. Overall, results pointed to the presence of unknown or unanalyzed biologically-active compounds in the sediments, mostly associated with the extracted polar fraction of the Mar Menor lagoon sediments. Our findings provide relevant information to be considered for the environmental management of contaminated coastal lagoons.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Agua de Mar/química , Contaminantes Químicos del Agua/toxicidad , Animales , Línea Celular , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/análisis , Ratones , Paracentrotus/efectos de los fármacos , Paracentrotus/embriología , Bifenilos Policlorados/análisis , Dibenzodioxinas Policloradas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Receptores de Hidrocarburo de Aril/metabolismo , Erizos de Mar , España , Contaminantes Químicos del Agua/análisis
16.
J Biophotonics ; 13(5): e201960197, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32049417

RESUMEN

Millions of women worldwide have silicone breast implants. It has been reported that implant failure occurs in approximately a tenth of patients within 10 years, and the consequences of dissemination of silicone debris are poorly understood. Currently, silicone detection in histopathological slides is based on morphological features as no specific immunohistochemical technique is available. Here, we show the feasibility and sensitivity of stimulated Raman scattering (SRS) imaging to specifically detect silicone material in stained histopathological slides, without additional sample treatment. Histology slides of four periprosthetic capsules from different implant types were obtained after explantation, as well as an enlarged axillary lymph node from a patient with a ruptured implant. SRS images coregistered with bright-field images revealed the distribution and quantity of silicone material in the tissue. Fast and high-resolution imaging of histology slides with molecular specificity using SRS provides an opportunity to investigate the role of silicone debris in the pathophysiology of implant-linked diseases.


Asunto(s)
Implantes de Mama , Diagnóstico por Imagen , Femenino , Humanos , Ganglios Linfáticos , Siliconas , Espectrometría Raman
17.
Acta Trop ; 193: 217-226, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30857860

RESUMEN

The water-related exposome is a significant determinant of human health. The disease burden through water results from water-associated communicable and non-communicable diseases and is influenced by water pollution with chemicals, solid waste (mainly plastics), pathogens, insects and other disease vectors. This paper analyses a range of water practitioner-driven health issues, including infectious diseases and chemical intoxication, using the conceptual framework of Drivers, Pressures, State, Impacts, and Responses (DPSIR), complemented with a selective literature review. Pressures in the environment result in changes in the State of the water body: chemical pollution, microbiological contamination and the presence of vectors. These and other health hazards affect the State of human health. The resulting Impacts in an exposed population or affected ecosystem, in turn incite Responses. Pathways from Drivers to Impacts are quite divergent for chemical pollution, microbiological contamination and the spread of antimicrobial resistance, in vectors of disease and for the combined effects of plastics. Potential Responses from the water sector, however, show remarkable similarities. Integrated water management interventions have the potential to address Drivers, Pressures, Impacts, and State of several health issues at the same time. Systematic and integrated planning and management of water resources, with an eye for human health, could contribute to reducing or preventing negative health impacts and enhancing the health benefits.


Asunto(s)
Enfermedades Transmisibles/transmisión , Conservación de los Recursos Hídricos , Microbiología del Agua , Contaminación Química del Agua/prevención & control , Animales , Control de Enfermedades Transmisibles , Vectores de Enfermedades , Ecosistema , Política de Salud , Humanos , Plásticos , Contaminación Química del Agua/efectos adversos
18.
Mar Pollut Bull ; 135: 17-29, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30301027

RESUMEN

Marine and coastal ecosystems are among the largest contributors to the Earth's productivity. Experimental studies have shown negative impacts of microplastics on individual algae or zooplankton organisms. Consequently, primary and secondary productivity may be negatively affected as well. In this study we attempted to estimate the impacts on productivity at ecosystem level based on reported laboratory findings with a modelling approach, using our biogeochemical model for the North Sea (Delft3D-GEM). Although the model predicted that microplastics do not affect the total primary or secondary production of the North Sea as a whole, the spatial patterns of secondary production were altered, showing local changes of ±10%. However, relevant field data on microplastics are scarce, and strong assumptions were required to include the plastic concentrations and their impacts under field conditions into the model. These assumptions reveal the main knowledge gaps that have to be resolved to improve the first estimate above.


Asunto(s)
Ecosistema , Ecotoxicología/métodos , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Ambiente , Modelos Teóricos , Mar del Norte , Fitoplancton/efectos de los fármacos , Fitoplancton/crecimiento & desarrollo , Plásticos/análisis , Contaminantes Químicos del Agua/análisis , Zooplancton/efectos de los fármacos , Zooplancton/crecimiento & desarrollo
19.
Environ Pollut ; 235: 113-120, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29276957

RESUMEN

Microplastics (MPs) are well-known emerging contaminants in the marine environment. A key route by which MPs can directly affect marine life is through ingestion. The objective of the present study was to evaluate the occurrence of MPs in marine life and seafood for human consumption in the Persian Gulf. We conducted a whole body analysis of MP (between 10 and 5000 µm in diameter) abundance in five species of molluscs with different feeding strategies, including both gastropods and bivalves from the littoral zone of the Iranian coast of the Persian Gulf. The mean number of total encountered MPs in all species ranged from 0.2 to 21.0 particles per g of soft tissue (wet weight) and from 3.7 to 17.7 particles per individual. Overall, microfibres followed by fragments were the most common type of MP isolated in each species (respectively > 50% and ≈26%). Film (≈14%) and pellets (≈2%) were less commonly observed. The observed MPs were classified into three size groups (ca. 10-25 µm, 25-250 µm and 250-5000 µm), and 37-58% of MPs fell into the smallest size group. Fourier transform infrared (FT-IR) analysis confirmed the presence of polyethylene (PE), polyethylene terephthalate (PET), and nylon (PA). Our results indicated that molluscan shellfish from the Persian Gulf contain MPs, with higher concentrations in a predatory species, suggesting trophic transfer of MPs in the food web. The consumption of edible species may be a source of human microplastic intake. We compared our results with those previously reported for other regions of the world and identified the need for further studies in the Persian Gulf.


Asunto(s)
Moluscos , Plásticos/análisis , Alimentos Marinos , Contaminantes Químicos del Agua/análisis , Animales , Contaminación de Alimentos , Humanos , Océano Índico , Irán , Tamaño de la Partícula , Alimentos Marinos/análisis , Espectroscopía Infrarroja por Transformada de Fourier
20.
Chemosphere ; 186: 10-16, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28759812

RESUMEN

Plastic debris acts as a sorbent phase for hydrophobic organic compounds like polychlorinated biphenyls (PCBs). Chemical partitioning models predict that the ingestion of microplastics with adsorbed chemicals in the field will tend not to result in significant net desorption of the chemical to the organism's tissues. This is expected due to the often limited differences in fugacity of the chemical between the indigestible plastic materials and the tissues, which are typically already exposed in the same environment to the same chemicals as the plastic. However laboratory trials validating these model predictions are scarce. In this study, PCB-loaded microplastics were offered to field-collected Norway lobsters (Nephrops norvegicus) during in vivo feeding laboratory experiments. Each ingestion experiment was repeated with and without loading a mixture of ten PCB congeners onto plastic microspheres (MS) made of polyethylene (PE) and polystyrene (PS) with diameters of either 500-600 µm or 6 µm. We observed that the presence of chemicals adsorbed to ingested microplastics did not lead to significant bioaccumulation of the chemicals in the exposed organisms. There was a limited uptake of PCBs in Nephrops tail tissue after ingestion of PCB-loaded PE MS, while almost no PCBs were detected in animals exposed to PS MS. In general, our results demonstrated that after 3 weeks of exposure the ingestion of plastic MS themselves did not affect the nutritional state of wild Nephrops.


Asunto(s)
Nephropidae/metabolismo , Plásticos , Bifenilos Policlorados/farmacocinética , Adsorción , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Microesferas , Noruega , Polietileno , Poliestirenos , Residuos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...