Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Funct Plant Biol ; 49(2): 155-169, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34813421

RESUMEN

Agricultural technologies aimed at increasing yields require the development of highly productive and stress-tolerant cultivars. Phenotyping can significantly accelerate breeding; however, no reliable markers have been identified to select the most promising cultivars at an early stage. In this work, we determined the light-induced dynamic of chlorophyll fluorescence (ChlF) parameters in young seedlings of 10 wheat (Triticum aestivum L.) cultivars and evaluated potency of these parameters as predictors of biomass accumulation and stress tolerance. Dry matter accumulation positively correlated with the effective quantum efficiency of photosystem II (Φ PSIIef ) and negatively correlated with the half-time of Φ PSIIef reaching (t 1/2 (Φ PSIIef )). There was a highly significant correlation between t 1/2 (Φ PSIIef ) and dry matter accumulation with increasing prediction period. Short-term heating and drought caused an inhibition of biomass accumulation and photosynthetic activity depending on the stressor intensity. The positive correlation between the Φ PSII dark level (Φ PSIId ) in young seedlings and tolerance to a rapidly increasing short-term stressor (heating) was shown. In the case of a long-term stressor (drought), we revealed a strong negative relationship between tolerance and the level of non-photochemical fluorescence quenching (NPQ). In general, the results show the potency of the ChlF parameters of young seedlings as predictors of biomass accumulation and stress tolerance.


Asunto(s)
Sequías , Triticum , Biomasa , Clorofila/farmacología , Fluorescencia , Calor , Fitomejoramiento
2.
Plants (Basel) ; 10(10)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34686016

RESUMEN

Natural and artificial extremely low-frequency magnetic fields (ELFMFs) are important factors influencing physiological processes in living organisms including terrestrial plants. Earlier, it was experimentally shown that short-term and long-term treatments by ELFMFs with Schumann resonance frequencies (7.8, 14.3, and 20.8 Hz) influenced parameters of photosynthetic light reactions in wheat leaves. The current work is devoted to an analysis of potential ways of this ELFMF influence on the light reactions. Only a short-term wheat treatment by 14.3 Hz ELFMF was used in the analysis. First, it was experimentally shown that ELFMF-induced changes (an increase in the effective quantum yield of photosystem II, a decrease in the non-photochemical quenching of chlorophyll fluorescence, a decrease in time of changes in these parameters, etc.) were observed under the action of ELFMF with widely ranging magnitudes (from 3 to 180 µT). In contrast, the potential quantum yield of photosystem II and time of relaxation of the energy-dependent component of the non-photochemical quenching were not significantly influenced by ELFMF. Second, it was shown that the ELFMF treatment decreased the proton gradient across the thylakoid membrane. In contrast, the H+ conductivity increased under this treatment. Third, an analysis of the simplest mathematical model of an H+ transport across the thylakoid membrane, which was developed in this work, showed that changes in H+ fluxes related to activities of the photosynthetic electron transport chain and the H+-ATP synthase were not likely a mechanism of the ELFMF influence. In contrast, changes induced by an increase in an additional H+ flux (probably, through the proton leakage and/or through the H+/Ca2+ antiporter activity in the thylakoid membrane) were in good accordance with experimental results. Thus, we hypothesized that this increase is the mechanism of the 14.3 Hz ELFMF influence (and, maybe, influences of other low frequencies) on photosynthetic light reactions in wheat.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA