Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 15(3): 4916-4926, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33621046

RESUMEN

The crystallization of nanomaterials is a primary source of solid-state, photonic structures. Thus, a detailed understanding of this process is of paramount importance for the successful application of photonic nanomaterials in emerging optoelectronic technologies. While colloidal crystallization has been thoroughly studied, for example, with advanced in situ electron microscopy methods, the noncolloidal crystallization (freezing) of nanoparticles (NPs) remains so far unexplored. To fill this gap, in this work, we present proof-of-principle experiments decoding a crystallization of reconfigurable assemblies of NPs at a solid state. The chosen material corresponds to an excellent testing bed, as it enables both in situ and ex situ investigation using X-ray diffraction (XRD), transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), atomic force microscopy (AFM), and optical spectroscopy in visible and ultraviolet range (UV-vis) techniques. In particular, ensemble measurements with small-angle XRD highlighted the dependence of the correlation length in the NPs assemblies on the number of heating/cooling cycles and the rate of cooling. Ex situ TEM imaging further supported these results by revealing a dependence of domain size and structure on the sample preparation route and by showing we can control the domain size over 2 orders of magnitude. The application of HAADF-STEM tomography, combined with in situ thermal control, provided three-dimensional single-particle level information on the positional order evolution within assemblies. This combination of real and reciprocal space provides insightful information on the anisotropic, reversibly reconfigurable assemblies of NPs. TEM measurements also highlighted the importance of interfaces in the polydomain structure of nanoparticle solids, allowing us to understand experimentally observed differences in UV-vis extinction spectra of the differently prepared crystallites. Overall, the obtained results show that the combination of in situ heating HAADF-STEM tomography with XRD and ex situ TEM techniques is a powerful approach to study nanoparticle freezing processes and to reveal the crucial impact of disorder in the solid-state aggregates of NPs on their plasmonic properties.

2.
Opt Express ; 27(22): 32523-32535, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684463

RESUMEN

In proximity mask aligner photolithography, diffraction of light at the mask pattern is the predominant source for image shape distortions such as line end shortening and corner rounding. One established method to mitigate the impact of diffraction is optical proximity correction. This method relies on a deliberate sub-resolution modification of photomask features to counteract such shape distortions, with the goal to improve pattern fidelity and uniformity of printed features. While previously considered for masks featuring only rectangular shapes in horizontal or vertical orientation, called Manhatten geometries, we demonstrate here the capabilities of computational mask aligner lithography by extending optical proximity correction to non-Manhattan geometries. We combine a rigorous simulation method for light propagation with a particle-swarm optimization to identify suitable mask patterns adapt to each occurring feature in the mask. The improvement in pattern quality is demonstrated in experimental prints. Our method extends the use of proximity lithography in optical manufacturing, as required in a multitude of micro-optical devices.

3.
Opt Express ; 27(15): 20990-21003, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510185

RESUMEN

We apply a high-resolution interference microscope with spectral resolution to investigate the scattering response of isolated meta-atoms in real space. The final meta-atoms consist of core-shell clusters that are fabricated using a bottom-up approach. The meta-atoms are investigated with an increasing complexity. We start by studying silica and gold spheres and conclude with the investigation of the meta-atom, which consists of a silica core sphere onto which gold nanospheres are attached. Numerical simulations entirely verify the measured data. The measuring process involves recording the intensity and phase of the total field emerging from the scattering process of an incident light at the particle in the transmitted half-space with spectral and high spatial resolution. We show that spectrally resolved high-resolution interference microscopy can be used to differentiate between nanoparticles and characterize single meta-atoms, something that is rarely accomplished.

4.
Light Sci Appl ; 7: 104, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564310

RESUMEN

Bloch surface waves (BSWs) are sustained at the interface of a suitably designed one-dimensional (1D) dielectric photonic crystal and an ambient material. The elements that control the propagation of BSWs are defined by a spatially structured device layer on top of the 1D photonic crystal that locally changes the effective index of the BSW. An example of such an element is a focusing device that squeezes an incident BSW into a tiny space. However, the ability to focus BSWs is limited since the index contrast achievable with the device layer is usually only on the order of Δn≈0.1 for practical reasons. Conventional elements, e.g., discs or triangles, which rely on a photonic nanojet to focus BSWs, operate insufficiently at such a low index contrast. To solve this problem, we utilize an inverse photonic design strategy to attain functional elements that focus BSWs efficiently into spatial domains slightly smaller than half the wavelength. Selected examples of such functional elements are fabricated. Their ability to focus BSWs is experimentally verified by measuring the field distributions with a scanning near-field optical microscope. Our focusing elements are promising ingredients for a future generation of integrated photonic devices that rely on BSWs, e.g., to carry information, or lab-on-chip devices for specific sensing applications.

5.
Opt Express ; 26(17): 22218-22233, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30130918

RESUMEN

A continuous improvement of resolution in mask-aligner lithography is sought after to meet the requirements of an ever decreasing minimum feature size in back-end processes. For periodic structures, utilizing the Talbot effect for lithography has emerged as a viable path. Here, by combining the Talbot effect with a continuous wave laser source emitting at 193 nm, we demonstrate successfully the fabrication of periodic arrays in silicon substrates with sub-micron feature sizes. The excellent coherence and the superior brilliance of this light source, compared to more traditional mercury lamps and excimer lasers as light source, enables the efficient beam shaping and a reduced minimum feature size at a fixed gap of 20 µm. We present a comprehensive study of proximity printing with this system, including simulations and selected experimental results of prints in up to the fourth Talbot plane. This printing technology can be used to manufacture optical metasurfaces, bio-sensor arrays, membranes, or microchannel plates.

6.
Opt Express ; 26(2): 730-743, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401954

RESUMEN

We present a mask-aligner lithographic system operated with a frequency-quadrupled continuous-wave diode laser emitting at 193 nm. For this purpose, a 772 nm diode laser is amplified by a tapered amplifier in the master-oscillator power-amplifier configuration. The emission wavelength is upconverted twice, using LBO and KBBF nonlinear crystals in second-harmonic generation enhancement cavities. An optical output power of 10 mW is achieved. As uniform exposure field illumination is crucial in mask-aligner lithography, beam shaping is realized with optical elements made from fused silica and CaF2 featuring a diffractive non-imaging homogenizer. A tandem setup of shaped random diffusers, one static and one rotating, is used to control speckle formation. We demonstrate first experimental soft contact and proximity prints for a field size of 1 cm2 with a standard binary photomask and proximity prints with a two-level phase mask, both printed into 120 nm layers of photoresist on unstructured silicon substrates.

7.
Opt Express ; 25(8): 8739-8750, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437951

RESUMEN

We investigate how the bias current affects the hot-spot relaxation dynamics in niobium nitride. We use for this purpose a near-infrared pump-probe technique on a waveguide-integrated superconducting nanowire single-photon detector driven in the two-photon regime. We observe a strong increase in the picosecond relaxation time for higher bias currents. A minimum relaxation time of (22 ± 1) ps is obtained when applying a bias current of 50% of the switching current at 1.7 K bath temperature. We also propose a practical approach to accurately estimate the photon detection regimes based on the reconstruction of the measured detector tomography at different bias currents and for different illumination conditions.

8.
Nano Lett ; 16(11): 7085-7092, 2016 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-27759401

RESUMEN

Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 µm. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay (∼120 ps) and recovery times (∼510 ps) and thus show potential for GHz count rates at low timing jitter (∼32 ps). The small absorption volume allows efficient threshold multiphoton detection.

9.
Med Biol Eng Comput ; 53(9): 829-42, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25861747

RESUMEN

The formation of different tissues in the callus during secondary bone healing is at least partly influenced by mechanical stimuli. We use computer simulations to test the consequences of different hypotheses of the mechanoregulation at the cellular level on the patterns of tissues formed during healing. The computational study is based on an experiment on sheep, where after a tibial osteotomy, histological sections were harvested at different time points. In the simulations, we used a recently proposed basic phenomenological model, which allows ossification to occur either via endochondral or intramembranous ossification, but tries otherwise to employ a minimal number of simulation parameters. The model was extended to consider also the possibility of bone resorption and consequently allowing a description of the full healing progression till the restoration of the cortex. Specifically, we investigated how three changes in the mechanoregulation influence the resulting tissue patterns: (1) a time delay between stimulation of the cell and the formation of the tissue, (2) a variable mechanosensitivity of the cells, and (3) an independence of long time intervals of the soft tissue maturation from the mechanical stimulus. For all three scenarios, our simulations do not show qualitative differences in the time development of the tissue patterns. Largest differences were observed in the intermediate phases of healing in the amount and location of the cartilage. Interestingly, the course of healing was virtually unaltered in case of scenario (3) where tissue maturation proceeded independent of mechanical stimulation.


Asunto(s)
Huesos/patología , Curación de Fractura , Mecanotransducción Celular , Animales , Fenómenos Biomecánicos , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Huesos/fisiopatología , Callo Óseo/patología , Cartílago/crecimiento & desarrollo , Simulación por Computador , Módulo de Elasticidad , Estándares de Referencia , Ovinos , Factores de Tiempo
10.
Ann Biomed Eng ; 39(10): 2531-41, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21692004

RESUMEN

Mechanobiological theories have been introduced to illustrate the interaction between biology and the local mechanical environment during bone healing. Although several theories have been proposed, a quantitative validation using histomorphometric data is still missing. In this study, in vivo histological data based on an ovine animal experiment was quantified and used to validate bone healing simulations focussing on the endochondral ossification process. The bone formation at different callus regions (periosteal and endosteal bone at the medial and lateral side) was analyzed from in vivo data and quantitatively compared with in silico results. A histomorphometric difference was found in medial and lateral hard callus formation 3 weeks after osteotomy. However, the same amount of new bone was formed on both sides between week 3 and 6. Using a parametric approach, distinct ranges for mechanical strain levels regulating tissue formation were found, for which the in silico prediction agrees with the in vivo endochondral ossification both in pattern and quantity. According to this finding, a strain range of 1 to 8% seems to be conducive for cartilage formation while bone formation may be facilitated by strains up to 4%. This study demonstrates the potential of a thorough validation of in silico results for gaining a better understanding of mechanobiological mechanisms during bone healing.


Asunto(s)
Callo Óseo/fisiología , Análisis de Elementos Finitos , Curación de Fractura/fisiología , Osteogénesis/fisiología , Animales , Cartílago Articular/fisiología , Módulo de Elasticidad , Fracturas Óseas , Modelos Animales , Modelos Biológicos , Osteotomía , Oveja Doméstica , Estrés Mecánico
11.
J Orthop Res ; 28(11): 1440-7, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20872579

RESUMEN

Secondary fracture healing in long bones leads to the successive formation of intricate patterns of tissues in the newly formed callus. The main aim of this work was to quantitatively describe the topology of these tissue patterns at different stages of the healing process and to generate averaged images of tissue distribution. This averaging procedure was based on stained histological sections (2, 3, 6, and 9 weeks post-operatively) of 64 sheep with a 3 mm tibial mid-shaft osteotomy, stabilized either with a rigid or a semi-rigid external fixator. Before averaging, histological images were sorted for topology according to six identified tissue patterns. The averaged images were obtained for both fixation types and the lateral and medial side separately. For each case, the result of the averaging procedure was a collection of six images characterizing quantitatively the progression of the healing process. In addition, quantified descriptions of the newly formed cartilage and the bone area fractions (BA/TA) of the bony callus are presented. For all cases, a linear increase in the BA/TA of the bony callus was observed. The slope was greatest in the case of the most rigid stabilization and lowest in the case of the least stiff. This topological description of the progression of bone healing will allow quantitative validation (or falsification) of current mechano-biological theories.


Asunto(s)
Curación de Fractura , Animales , Fenómenos Biomecánicos , Femenino , Modelos Lineales , Modelos Animales , Osteotomía , Ovinos
12.
Biomaterials ; 31(27): 7167-74, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20580430

RESUMEN

A simple approach to the mechanical modulation of layer-by-layer (LbL) films is through manipulation of the film assembly. Here, we report results based on altering the salt concentration during film assembly and its effect on film rigidity. Based on changes in film rigidity, cell adhesion characteristics and transfection activity were investigated in vitro. LbL films consisting of reducible hyperbranched poly(amide amine) (RHB) have been implemented along with DNA for investigating fibroblast adhesion on [RHB/DNA](n/2) films with varying rigidities. The rigidity was varied by changing the ionic concentration of the deposition solution between 0.01 m NaCl and 1.0 m NaCl. Molecular force probe (MFP) measurements were performed to measure the apparent Young's modulus, E(APP), of the films in situ. Cell adhesion and stress-fiber characteristics were investigated using total internal reflectance microscopy (TIRF-M). The average cell peripheral area, fiber density and average fiber length during 5 days of cell growth on films with either low (below 2.0 MPa) or high (above 2.0 MPa) film elastic modulus were investigated. Transfection studies were performed using gfpDNA and SEAP-DNA to investigate if changes in cell adhesion affect transfection activity. Furthermore, cell proliferation and cytotoxicity studies were used to investigate cellular viability over a week. The results have shown that surface modification of bioreducible LbL films of controlled thickness and roughness promotes cellular adhesion, stress-fiber growth and increased transfection activity without the need for an additional adhesive protein pre-coating of the surface or chemical cross-linking of the film.


Asunto(s)
Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Membranas Artificiales , Polímeros/química , Polímeros/farmacología , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Adhesión Celular/fisiología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ratones , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Células 3T3 NIH , Polímeros/síntesis química , Ingeniería de Tejidos , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...