Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(2): 108943, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38333702

RESUMEN

Glucocorticoid (GC) signaling is essential for mounting a stress response, however, chronic stress or prolonged GC therapy downregulates the GC receptor (GR), leading to GC resistance. Regulatory mechanisms that refine this equilibrium are not well understood. Here, we identify seven lysine acetylation sites in the amino terminal domain of GR, with lysine 154 (Lys154) in the AF-1 region being the dominant acetyl-acceptor. GR-Lys154 acetylation is mediated by p300/CBP in the nucleus in an agonist-dependent manner and correlates with transcriptional activity. Deacetylation by NAD+-dependent SIRT1 facilitates dynamic regulation of this mark. Notably, agonist-binding to both wild-type GR and an acetylation-deficient mutant elicits similar short-term target gene expression. In contrast, upon extended treatment, the polyubiquitination of the acetylation-deficient GR mutant is impaired resulting in higher protein stability, increased chromatin association and prolonged transactivation. Taken together, reversible acetylation fine-tunes duration of the GC response by regulating proteasomal degradation of activated GR.

2.
Neurobiol Stress ; 24: 100541, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37215522

RESUMEN

Male C57BL/6N mice exposed to the chronic subordinate colony housing (CSC; 19 days) paradigm, a preclinically validated model of chronic psychosocial stress, are characterized by unaffected basal morning plasma corticosterone (CORT) concentrations despite adrenal and pituitary hyperplasia and increased adrenocorticotropic hormone (ACTH) plasma concentrations, compared with single-housed control (SHC) mice. However, as CSC mice are still able to show an increased CORT secretion towards novel heterotypic stressors, these effects might reflect an adaptation rather than a functional breakdown of general hypothalamus-pituitary-adrenal (HPA) axis functionality. In the present study we used male mice of a genetically modified mouse line, to investigate whether genetically-driven ACTH overexpression compromises adaptational processes occurring at the level of the adrenals during CSC exposure. Experimental mice carried a point mutation in the DNA binding domain of the glucocorticoid (GC) receptor (GR), attenuating dimerization of GR (GRdim), resulting in a congenially compromised negative feedback inhibition at the level of the pituitary. In line with previous studies, CSC mice in both the wild type (WT; GR+/+) and GRdim group developed adrenal enlargement. Moreover, compared with respective SHC and WT mice, CSC GRdim mice show increased basal morning plasma ACTH and CORT concentrations. Quantitative polymerase chain reaction (qPCR) analysis revealed neither a genotype effect, nor a CSC effect on pituitary mRNA expression of the ACTH precursor proopiomelanocortin (POMC). Finally, CSC increased anxiety-related behavior, active coping and splenocyte in vitro (re)activity in both WT and GRdim mice, while a CSC-induced increase in adrenal lipid vesicles and splenic GC resistance was detectable only in WT mice. Of note, lipopolysaccharide (LPS)-stimulated splenocytes of GRdim mice were resistant to the inhibitory effects of CORT. Together our findings support the hypothesis that pituitary ACTH protein concentration is negatively controlled by GR dimerization under conditions of chronic psychosocial stress, while POMC gene transcription is not dependent on intact GR dimerization under both basal and chronic stress conditions. Finally, our data suggest that adrenal adaptations during chronic psychosocial stress (i.e., ACTH desensitization), aiming at the prevention of prolonged hypercorticism, are protective only to a certain threshold of plasma ACTH levels.

3.
Front Immunol ; 13: 980707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172380

RESUMEN

Introduction: We previously showed that attenuated glucocorticoid receptor (GR) function in mice (GRdim/dim) aggravates systemic hypotension and impairs organ function during endotoxic shock. Hemorrhagic shock (HS) causes impaired organ perfusion, which leads to tissue hypoxia and inflammation with risk of organ failure. Lung co-morbidities like chronic obstructive pulmonary disease (COPD) can aggravate tissue hypoxia via alveolar hypoxia. The most common cause for COPD is cigarette smoke (CS) exposure. Therefore, we hypothesized that affecting GR function in mice (GRdim/dim) and pre-traumatic CS exposure would further impair hemodynamic stability and organ function after HS. Methods: After 3 weeks of CS exposure, anesthetized and mechanically ventilated GRdim/dim and GR+/+ mice underwent pressure-controlled HS for 1h via blood withdrawal (mean arterial pressure (MAP) 35mmHg), followed by 4h of resuscitation with re-transfusion of shed blood, colloid fluid infusion and, if necessary, continuous intravenous norepinephrine. Acid-base status and organ function were assessed together with metabolic pathways. Blood and organs were collected at the end of the experiment for analysis of cytokines, corticosterone level, and mitochondrial respiratory capacity. Data is presented as median and interquartile range. Results: Nor CS exposure neither attenuated GR function affected survival. Non-CS GRdim/dim mice had a higher need of norepinephrine to keep target hemodynamics compared to GR+/+ mice. In contrast, after CS exposure norepinephrine need did not differ significantly between GRdim/dim and GR+/+ mice. Non-CS GRdim/dim mice presented with a lower pH and increased blood lactate levels compared to GR+/+ mice, but not CS exposed mice. Also, higher plasma concentrations of some pro-inflammatory cytokines were observed in non-CS GRdim/dim compared to GR+/+ mice, but not in the CS group. With regards to metabolic measurements, CS exposure led to an increased lipolysis in GRdim/dim compared to GR+/+ mice, but not in non-CS exposed animals. Conclusion: Whether less metabolic acidosis or increased lipolysis is the reason or the consequence for the trend towards lower catecholamine need in CS exposed GRdim/dim mice warrants further investigation.


Asunto(s)
Fumar Cigarrillos , Enfermedades Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Choque Hemorrágico , Animales , Catecolaminas , Corticosterona , Citocinas/metabolismo , Glucocorticoides , Hipoxia/complicaciones , Lactatos , Enfermedades Pulmonares/complicaciones , Ratones , Norepinefrina , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Choque Hemorrágico/complicaciones
4.
Bone Res ; 10(1): 33, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35383146

RESUMEN

Identification of regulators of osteoblastogenesis that can be pharmacologically targeted is a major goal in combating osteoporosis, a common disease of the elderly population. Here, unbiased kinome RNAi screening in primary murine osteoblasts identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation in both murine and human preosteoblastic cells. Cdk5 knockdown by siRNA, genetic deletion using the Cre-loxP system, or inhibition with the small molecule roscovitine enhanced osteoblastogenesis in vitro. Roscovitine treatment significantly enhanced bone mass by increasing osteoblastogenesis and improved fracture healing in mice. Mechanistically, downregulation of Cdk5 expression increased Erk phosphorylation, resulting in enhanced osteoblast-specific gene expression. Notably, simultaneous Cdk5 and Erk depletion abrogated the osteoblastogenesis conferred by Cdk5 depletion alone, suggesting that Cdk5 regulates osteoblast differentiation through MAPK pathway modulation. We conclude that Cdk5 is a potential therapeutic target to treat osteoporosis and improve fracture healing.

5.
Biomedicines ; 10(2)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35203613

RESUMEN

Glucocorticoids (GCs) are widely used to treat inflammatory diseases. However, their long-term use leads to glucocorticoid-induced osteoporosis, increasing morbidity and mortality. Both anabolic and anti-resorptive drugs are used to counteract GC-induced bone loss, however, they are expensive and/or have major side effects. Therefore, identifying new targets for cost-effective, small-molecule inhibitors is essential. We recently identified cyclin-dependent kinase 5 (Cdk5) as a suppressor of osteoblast differentiation and showed that its inhibition with roscovitine promoted osteoblastogenesis, thus improving the skeletal bone mass and fracture healing. Here, we assessed whether Cdk5 knockdown or inhibition could also reverse the GC-mediated suppression of osteoblast differentiation, bone loss, and fracture healing. We first demonstrated that Cdk5 silencing abolished the dexamethasone (Dex)-induced downregulation of alkaline phosphatase (Alp) activity, osteoblast-specific marker gene expression (Runx2, Sp7, Alpl, and Bglap), and mineralization. Similarly, Cdk5 inhibition rescued Dex-induced suppression of Alp activity. We further demonstrated that Cdk5 inhibition reversed prednisolone (Pred)-induced bone loss in mice, due to reduced osteoclastogenesis rather than improved osteoblastogenesis. Moreover, we revealed that Cdk5 inhibition failed to improve Pred-mediated impaired fracture healing. Taken together, we demonstrated that Cdk5 inhibition with roscovitine ameliorated GC-mediated bone loss but did not reverse GC-induced compromised fracture healing in mice.

6.
J Neurosci ; 42(12): 2474-2491, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35149515

RESUMEN

In postmitotic neurons, several tumor suppressor genes (TSGs), including p53, Rb, and PTEN, modulate the axon regeneration success after injury. Particularly, PTEN inhibition is a key driver of successful CNS axon regeneration after optic nerve or spinal cord injury. In contrast, in peripheral neurons, TSG influence in neuronal morphology, physiology, and pathology has not been investigated to the same depth. In this study, we conditionally deleted PTEN from mouse facial motoneurons (Chat-Cre/PtenloxP/loxP ) and analyzed neuronal responses in vivo with or without peripheral facial nerve injury in male and female mice. In uninjured motoneurons, PTEN loss induced somatic, axonal, and nerve hypertrophy, synaptic terminal enlargement and reduction in physiological whisker movement. Despite these morphologic and physiological changes, PTEN deletion positively regulated facial nerve regeneration and recovery of whisker movement after nerve injury. Regenerating PTEN-deficient motoneurons upregulated P-CREB and a signaling pathway involving P-Akt, P-PRAS40, P-mTOR, and P-4EBP1. In aged mice (12 months), PTEN deletion induced hair loss and facial hyperplasia of the epidermis. This suggests a time window in younger mice with PTEN loss stimulating axon growth after injury, however, at the risk of hyperplasia formation at later time points in the old animal. Overall, our data highlight a dual TSG function with PTEN loss impairing physiological neuron function but furthermore underscoring the positive effects of PTEN ablation in axon regeneration also for the PNS.SIGNIFICANCE STATEMENT Tumor suppressor genes (TSGs) restrict cell proliferation and growth. TSG inhibition, including p53 and PTEN, stimulates axon regeneration after CNS injury. In contrast, in PNS axon regeneration, TSGs have not been analyzed in great depth. Herein we show enhanced peripheral axon regeneration after PTEN deletion from facial motoneurons. This invokes a signaling cascade with novel PTEN partners, including CREB and PRAS40. In adult mice, PTEN loss induces hyperplasia of the skin epidermis, suggesting detrimental consequences when reaching adulthood in contrast to a beneficial TSG role for regeneration in young adult mice. Thus, our data highlight the double-edged sword nature of interfering with TSG function.


Asunto(s)
Traumatismos del Nervio Facial , Regeneración Nerviosa , Fosfohidrolasa PTEN/metabolismo , Animales , Axones/fisiología , Traumatismos del Nervio Facial/genética , Traumatismos del Nervio Facial/patología , Femenino , Hiperplasia/patología , Hipertrofia/patología , Masculino , Ratones , Neuronas Motoras/metabolismo , Regeneración Nerviosa/genética , Proteína p53 Supresora de Tumor
7.
FEBS J ; 289(19): 5718-5743, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34213830

RESUMEN

The glucocorticoid receptor (GR) is a bona fide ligand-regulated transcription factor. Cloned in the 80s, the GR has become one of the best-studied and clinically most relevant members of the nuclear receptor superfamily. Cooperative activity of GR with other transcription factors and a plethora of coregulators contribute to the tissue- and context-specific response toward the endogenous and pharmacological glucocorticoids (GCs). Furthermore, nontranscriptional activities in the cytoplasm are emerging as an additional function of GR. Over the past 40 years, the concepts of GR mechanisms of action had been constantly changing. Different methodologies in the pregenomic and genomic era of molecular biological research and recent cutting-edge technology in single-cell and single-molecule analysis are steadily evolving the views, how the GR in particular and transcriptional regulation in general act in physiological and pathological processes. In addition to the development of technologies for GR analysis, the use of model organisms provides insights how the GR in vivo executes GC action in tissue homeostasis, inflammation, and energy metabolism. The model organisms, namely the mouse, but also rats, zebrafish, and recently fruit flies carrying mutations of the GR became a major driving force to analyze the molecular function of GR in disease models. This guide provides an overview of the exciting research and paradigm shifts in the GR field from past to present with a focus on GR transcription factor networks, GR DNA-binding and single-cell analysis, and model systems.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Animales , ADN , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Ligandos , Ratones , Ratas , Receptores Citoplasmáticos y Nucleares , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/genética , Pez Cebra/genética
8.
Mol Metab ; 57: 101424, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954109

RESUMEN

OBJECTIVES: Glucocorticoids (GCs) are one of the most widely prescribed anti-inflammatory drugs. By acting through their cognate receptor, the glucocorticoid receptor (GR), GCs downregulate the expression of pro-inflammatory genes and upregulate the expression of anti-inflammatory genes. Metabolic pathways have recently been identified as key parts of both the inflammatory activation and anti-inflammatory polarization of macrophages, immune cells responsible for acute inflammation and tissue repair. It is currently unknown whether GCs control macrophage metabolism, and if so, to what extent metabolic regulation by GCs confers anti-inflammatory activity. METHODS: Using transcriptomic and metabolomic profiling of macrophages, we identified GC-controlled pathways involved in metabolism, especially in mitochondrial function. RESULTS: Metabolic analyses revealed that GCs repress glycolysis in inflammatory myeloid cells and promote tricarboxylic acid (TCA) cycle flux, promoting succinate metabolism and preventing intracellular accumulation of succinate. Inhibition of ATP synthase attenuated GC-induced transcriptional changes, likely through stalling of TCA cycle anaplerosis. We further identified a glycolytic regulatory transcription factor, HIF1α, as regulated by GCs, and as a key regulator of GC responsiveness during inflammatory challenge. CONCLUSIONS: Our findings link metabolism to gene regulation by GCs in macrophages.


Asunto(s)
Ciclo del Ácido Cítrico , Glucocorticoides , Glucocorticoides/farmacología , Humanos , Inflamación/metabolismo , Macrófagos/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
9.
Cells ; 10(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34831143

RESUMEN

For more than 70 years, glucocorticoids (GCs) have been a powerful and affordable treatment option for inflammatory diseases. However, their benefits do not come without a cost, since GCs also cause side effects. Therefore, strong efforts are being made to improve their therapeutic index. In this review, we illustrate the mechanisms and target cells of GCs in the pathogenesis and treatment of some of the most frequent inflammatory disorders affecting the central nervous system, the gastrointestinal tract, the lung, and the joints, as well as graft-versus-host disease, which often develops after hematopoietic stem cell transplantation. In addition, an overview is provided of novel approaches aimed at improving GC therapy based on chemical modifications or GC delivery using nanoformulations. GCs remain a topic of highly active scientific research despite being one of the oldest class of drugs in medical use.


Asunto(s)
Glucocorticoides/metabolismo , Inflamación/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Inflamación/patología , Modelos Biológicos , Nanopartículas/química , Fenotipo
10.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502552

RESUMEN

Immune response control is critical as excessive cytokine production can be detrimental and damage the host. Interleukin-10 (Il-10), an anti-inflammatory cytokine produced primarily by macrophages, is a key regulator that counteracts and controls excessive inflammatory response. Il-10 expression is regulated through the transcription factor c-Maf. Another regulator of Il-10 production is p35, an activator of the cyclin-dependent kinase 5 (Cdk5), which decreases Il-10 production in macrophages, thus increasing inflammation. However, Cdk5 regulation of c-Maf and the involvement of Il-10 production in macrophages has not yet been investigated. We used in vitro primary bone marrow-derived macrophages (BMDMs) lacking Cdk5, stimulated them with lipopolysaccharid (LPS) and observed increased levels of c-Maf and Il-10. In an in vivo mouse model of LPS-induced endotoxemia, mice lacking Cdk5 in macrophages showed increased levels of c-Maf and elevated levels of Il-10 in lungs as well as in plasma, resulting in ameliorated survival. Taken together, we identified Cdk5 as a potential novel regulator of Il-10 production through c-Maf in macrophages under inflammatory conditions. Our results suggest that inhibition of Cdk5 enhances the c-Maf-Il-10 axis and thus potentiates improvement of anti-inflammatory therapy.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/genética , Endotoxemia/genética , Inflamación/genética , Interleucina-10/genética , Macrófagos/metabolismo , Proteínas Proto-Oncogénicas c-maf/genética , Animales , Células Cultivadas , Quimiocinas/genética , Quimiocinas/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citocinas/genética , Citocinas/metabolismo , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Regulación de la Expresión Génica , Inflamación/metabolismo , Interleucina-10/metabolismo , Lipopolisacáridos , Pulmón/metabolismo , Pulmón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-maf/metabolismo
11.
Mol Metab ; 47: 101179, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33548499

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) displays a strong circadian rhythm in metabolic activity, but it is unclear how this rhythm is regulated. As circulating levels of corticosterone coincide with the rhythm of triglyceride-derived fatty acid (FA) uptake by BAT, we investigated whether corticosterone regulates BAT circadian rhythm. METHODS: Corticosterone levels were flattened by implanting mice with subcutaneous corticosterone-releasing pellets, resulting in constant circulating corticosterone levels. RESULTS: Flattened corticosterone rhythm caused a complete loss of circadian rhythm in triglyceride-derived fatty acid uptake by BAT. This effect was independent of glucocorticoid receptor expression in (brown) adipocytes and was not caused by deregulation of clock gene expression or overexposure to glucocorticoids, but rather seemed mediated by reduced sympathetic innervation of BAT. In a mouse model of hyperlipidemia and metabolic syndrome, long-term experimental flattening of corticosterone - and thus rhythm in BAT function - resulted in adiposity. CONCLUSIONS: This study highlights that a physiological rhythm in glucocorticoids is an important regulator of BAT function and essential for the maintenance of metabolic health.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Ritmo Circadiano/fisiología , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Adipocitos/metabolismo , Adipocitos/patología , Tejido Adiposo Pardo/patología , Adiposidad , Animales , Corticosterona/metabolismo , Ácidos Grasos/metabolismo , Femenino , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Receptores de Glucocorticoides/genética , Transcriptoma , Triglicéridos/metabolismo
12.
Methods Mol Biol ; 2261: 247-262, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33420994

RESUMEN

The comprehensive analysis of serum cytokine levels can be challenging due to low sample volumes and time consuming when using single-target methods like enzyme-linked immunosorbent assay (ELISA). Bead-based detection systems allow the simultaneous detection of multiple analytes using minimal sample volumes. Here we describe the use of a multiplex cytokine, chemokine, and growth factor assay for mouse cytokines in a 96-well format. This assay is based on antibody-coupled fluorescent magnetic beads combined with biotinylated secondary detection antibody followed by fluorescent-tagged streptavidin in a sandwich-like composition. Final assay readout provides the concentrations of 23 different cytokines, chemokines, and growth factors in up to 76 samples.


Asunto(s)
Quimiocinas/sangre , Citocinas/sangre , Endotoxemia/sangre , Técnica del Anticuerpo Fluorescente Indirecta , Fluoroinmunoensayo , Péptidos y Proteínas de Señalización Intercelular/sangre , Proteómica , Animales , Biotinilación , Modelos Animales de Enfermedad , Endotoxemia/inducido químicamente , Endotoxemia/genética , Lipopolisacáridos , Ratones Noqueados , Receptores de Glucocorticoides/deficiencia , Receptores de Glucocorticoides/genética
13.
Cells ; 11(1)2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-35011674

RESUMEN

We previously showed that attenuated lung injury after hemorrhagic shock (HS) coincided with enhanced levels of the glucocorticoid (GC) receptor (GR) in lung tissue of swine. Here, we investigated the effects of impaired GR signaling on the lung during resuscitated HS using a dysfunctional GR mouse model (GRdim/dim). In a mouse intensive care unit, HS led to impaired lung mechanics and aggravated lung inflammation in GRdim/dim mice compared to wildtype mice (GR+/+). After HS, high levels of the pro-inflammatory and pro-apoptotic transcription factor STAT1/pSTAT1 were found in lung samples from GRdim/dim mice. Lungs of GRdim/dim mice revealed apoptosis, most likely as consequence of reduced expression of the lung-protective Angpt1 compared to GR+/+ after HS. RNA-sequencing revealed increased expression of pro-apoptotic and cytokine-signaling associated genes in lung tissue of GRdim/dim mice. Furthermore, high levels of pro-inflammatory cytokines and iNOS were found in lungs of GRdim/dim mice. Our results indicate impaired repression of STAT1/pSTAT1 due to dysfunctional GR signaling in GRdim/dim mice, which leads to increased inflammation and apoptosis in the lungs. These data highlight the crucial role of functional GR signaling to attenuate HS-induced lung damage.


Asunto(s)
Lesión Pulmonar/terapia , Receptores de Glucocorticoides/metabolismo , Choque Hemorrágico/complicaciones , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de Señal
14.
Intensive Care Med Exp ; 8(Suppl 1): 37, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33336296

RESUMEN

Glucocorticoids (GCs) are stress hormones that regulate developmental and physiological processes and are among the most potent anti-inflammatory drugs to suppress chronic and acute inflammation. GCs act through the glucocorticoid receptor (GR), a ubiquitously expressed ligand-activated transcription factor, which translocates into the nucleus and can act via two different modes, as a GR monomer or as a GR dimer. These two modes of action are not clearly differentiated in practice and may lead to completely different therapeutic outcomes. Detailed aspects of GR mechanisms are often not taken into account when GCs are used in different clinical scenarios. Patients, with critical illness-related corticosteroid insufficiency, treated with natural or synthetic GCs are still missing a clearly defined therapeutic strategy. This review discusses the different modes of GR function and its importance on organ function in vivo.

15.
Artículo en Inglés | MEDLINE | ID: mdl-32477273

RESUMEN

The pathophysiology of sepsis-induced myocardial dysfunction is not resolved to date and comprises inflammation, barrier dysfunction and oxidative stress. Disease-associated reduction of tissue cystathionine-γ-lyase (CSE) expression, an endogenous H2S-producing enzyme, is associated with oxidative stress, barrier dysfunction and organ injury. CSE-mediated cardio-protection has been suggested to be related the upregulation of oxytocin receptor (OTR). CSE can also mediate glucocorticoid receptor (GR) signaling, which is important for normal heart function. A sepsis-related loss of cardiac CSE expression associated with impaired organ function has been reported previously. The aim of this current post hoc study was to investigate the role of cardiac GR and OTR after polymicrobial sepsis in a clinically relevant, resuscitated, atherosclerotic porcine model. Anesthetized and instrumented FBM (Familial Hypercholesterolemia Bretoncelles Meishan) pigs with high fat diet-induced atherosclerosis underwent poly-microbial septic shock (n = 8) or sham procedure (n = 5), and subsequently received intensive care therapy with fluid and noradrenaline administration for 24 h. Cardiac protein expression and mRNA levels were analyzed. Systemic troponin, a marker of cardiac injury, was significantly increased in septic animals in contrast to sham, whereas OTR and GR expression in septic hearts were reduced, along with a down-regulation of anti-inflammatory GR target genes and the antioxidant transcription factor NRF2. These results suggest a potential interplay between GR, CSE, and OTR in sepsis-mediated oxidative stress, inflammation and cardiac dysfunction.


Asunto(s)
Aterosclerosis/fisiopatología , Cistationina gamma-Liasa/metabolismo , Regulación de la Expresión Génica , Cardiopatías/patología , Hipercolesterolemia/fisiopatología , Receptores de Glucocorticoides/metabolismo , Receptores de Oxitocina/metabolismo , Choque Séptico/complicaciones , Animales , Cistationina gamma-Liasa/genética , Modelos Animales de Enfermedad , Cardiopatías/etiología , Cardiopatías/metabolismo , Sulfuro de Hidrógeno/metabolismo , Masculino , Estrés Oxidativo , Receptores de Glucocorticoides/genética , Receptores de Oxitocina/genética , Transducción de Señal , Porcinos
16.
J Allergy Clin Immunol ; 146(5): 1137-1151, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32199911

RESUMEN

BACKGROUND: Scavenger receptor CD163 is exclusively expressed on monocytes/macrophages and is widely used as a marker for alternatively activated macrophages. However, the role of CD163 is not yet clear. OBJECTIVES: We sought to examine the function of CD163 in steady-state as well as in sterile and infectious inflammation. METHODS: Expression of CD163 was analyzed under normal and inflammatory conditions in mice. Functional relevance of CD163 was investigated in models of inflammation in wild-type and CD163-/- mice. RESULTS: We describe a subpopulation of bone marrow-resident macrophages (BMRMs) characterized by a high expression of CD163 and functionally distinct from classical bone marrow-derived macrophages. Development of CD163+ BMRMs is strictly dependent on IFN regulatory factor-8. CD163+ BMRMs show a specific transcriptome and cytokine secretion pattern demonstrating a specific immunomodulatory profile of these cells. Accordingly, CD163-/- mice show a stronger inflammation in allergic contact dermatitis, indicating a regulatory role of CD163. However, CD163-/- mice are highly susceptible to S aureus infections, demonstrating the relevance of CD163 for antimicrobial defense as well. CONCLUSIONS: Our data indicate that anti-inflammatory and immunosuppressive mechanisms are not necessarily associated with a decreased antimicrobial activity. In contrast, our data define a novel macrophage population that controls overwhelming inflammation on one hand but is also necessary for an effective control of infections on the other hand.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Células de la Médula Ósea/metabolismo , Dermatitis Alérgica por Contacto/inmunología , Inflamación/inmunología , Macrófagos/metabolismo , Receptores de Superficie Celular/metabolismo , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/fisiología , Animales , Antígenos CD/genética , Antígenos de Diferenciación Mielomonocítica/genética , Células de la Médula Ósea/inmunología , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Inmunomodulación , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Activación de Macrófagos , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Superficie Celular/genética , Transcriptoma
17.
Pharmacol Res ; 151: 104536, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31734346

RESUMEN

Controversial data are available on hydrogen sulfide (H2S) during hemorrhage and resuscitation, depending on timing, dosing, mode of application, and the H2S donor used. Sodium thiosulfate (Na2S2O3) is a recognized drug devoid of major side effects, which attenuated murine acute lung injury and cerebral ischemia/reperfusion injury. Therefore, we tested the hypothesis whether Na2S2O3 would mitigate organ dysfunction in porcine hemorrhage-and-resuscitation. We studied animals with pre-existing coronary artery disease because of the reduced coronary arterial expression of the H2S producing enzyme cystathionine-γ-lyase (CSE) in this prospective, randomized, controlled, blinded experimental study. 20 anesthetized and instrumented pigs underwent 3 h of hemorrhage (removal of 30 % of the blood volume and subsequent titration of mean arterial pressure to 40 mmHg). Resuscitation (72 h) comprised re-transfusion of shed blood, crystalloids, and continuous i.v. norepinephrine. Animals randomly received vehicle or Na2S2O3 (0.1 g·kg-1 h-1) for 24 h. Before, at the end of and every 24 h after shock, hemodynamics, metabolism, blood gases, lung, heart, kidney, and liver function and injury were evaluated together with cytokines and parameters of oxidative and nitrosative stress. Immediate post mortem lung, kidney, heart, and liver specimen were analyzed for marker proteins of inflammation and oxidative and nitrosative stress and mitochondrial respiratory activity in the heart, kidney, and liver. Immuno-histochemical analysis comprised lung extra-vascular albumin accumulation, nitrotyrosine formation, and CSE and glucocorticoid receptor (GCR) expression. Na2S2O3 significantly attenuated shock-induced impairment of lung mechanics and gas exchange (plateau and positive end-expiratory pressure at 72 h p = 0.0006/p = 0.0264; Horovitz index at 48 h p = 0.0261), which coincided with a higher tissue GCR expression (p = 0.0415). During resuscitation from hemorrhagic shock Na2S2O3 attenuated shock-induced acute lung injury in co-morbid swine, most likely due to a GCR expression related mechanism.


Asunto(s)
Antioxidantes/uso terapéutico , Aterosclerosis/complicaciones , Choque Hemorrágico/complicaciones , Choque Hemorrágico/tratamiento farmacológico , Tiosulfatos/uso terapéutico , Animales , Antioxidantes/administración & dosificación , Aterosclerosis/patología , Enfermedad de la Arteria Coronaria/complicaciones , Enfermedad de la Arteria Coronaria/patología , Femenino , Masculino , Distribución Aleatoria , Resucitación , Choque Hemorrágico/patología , Porcinos , Tiosulfatos/administración & dosificación
18.
Front Immunol ; 10: 1859, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31440248

RESUMEN

For many decades, glucocorticoids have been widely used as the gold standard treatment for inflammatory conditions. Unfortunately, their clinical use is limited by severe adverse effects such as insulin resistance, cardiometabolic diseases, muscle and skin atrophies, osteoporosis, and depression. Glucocorticoids exert their effects by binding to the Glucocorticoid Receptor (GR), a ligand-activated transcription factor which both positively, and negatively regulates gene expression. Extensive research during the past several years has uncovered novel mechanisms by which the GR activates and represses its target genes. Genome-wide studies and mouse models have provided valuable insight into the molecular mechanisms of inflammatory gene regulation by GR. This review focusses on newly identified target genes and GR co-regulators that are important for its anti-inflammatory effects in innate immune cells, as well as mutations within the GR itself that shed light on its transcriptional activity. This research progress will hopefully serve as the basis for the development of safer immune suppressants with reduced side effect profiles.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Glucocorticoides/inmunología , Inmunosupresores/inmunología , Receptores de Glucocorticoides/inmunología , Animales , Glucocorticoides/farmacología , Humanos , Inmunosupresores/farmacología
19.
Front Immunol ; 10: 1554, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354714

RESUMEN

The suppression of activated pro-inflammatory macrophages during immune response has a major impact on the outcome of many inflammatory diseases including sepsis and rheumatoid arthritis. The pro- and anti-inflammatory functions of macrophages have been widely studied, whereas their regulation under immunosuppressive treatments such as glucocorticoid (GC) therapy is less well-understood. GC-mediated glucocorticoid receptor (GR) activation is crucial to mediate anti-inflammatory effects. In addition, the anti-cancer drug roscovitine, that is currently being tested in clinical trials, was recently described to regulate inflammatory processes by inhibiting different Cdks such as cyclin-dependent kinase 5 (Cdk5). Cdk5 was identified as a modulator of inflammatory processes in different immune cells and furthermore described to influence GR gene expression in the brain. Whether roscovitine can enhance the immunosuppressive effects of GCs and if the inhibition of Cdk5 affects GR gene regulatory function in innate immune cells, such as macrophages, has not yet been investigated. Here, we report that roscovitine enhances the immunosuppressive Dexamethasone (Dex) effect on the inducible nitric oxide synthase (iNos) expression, which is essential for immune regulation. Cdk5 deletion in macrophages prevented iNos protein and nitric oxide (NO) generation after a combinatory treatment with inflammatory stimuli and Dex. Cdk5 deletion in macrophages attenuated the GR phosphorylation on serine 211 after Dex treatment alone and in combination with inflammatory stimuli, but interestingly increased the GR-dependent anti-inflammatory target gene dual-specificity phosphatase 1 (Dusp1, Mkp1). Mkp1 phosphatase activity decreases the activation of its direct target p38Mapk, reduced iNos expression and NO production upon inflammatory stimuli and Dex treatment in the absence of Cdk5. Taken together, we identified Cdk5 as a potential novel regulator of NO generation in inflammatory macrophages under GC treatment. Our data suggest that GC treatment in combination with specific Cdk5 inhibtior(s) provides a stronger suppression of inflammation and could thus replace high-dose GC therapy which has severe side effects in the treatment of inflammatory diseases.


Asunto(s)
Artritis Reumatoide/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Inflamación/metabolismo , Macrófagos/inmunología , Receptores de Glucocorticoides/metabolismo , Sepsis/metabolismo , Eliminación de Secuencia/genética , Animales , Antiinflamatorios/metabolismo , Artritis Reumatoide/terapia , Células Cultivadas , Glucocorticoides/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sepsis/terapia
20.
J Neuroendocrinol ; 31(8): e12735, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31121060

RESUMEN

Brain mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respond to the same glucocorticoid hormones but can have differential effects on cellular function. Several lines of evidence suggest that MR-specific target genes must exist and might underlie the distinct effects of the receptors. The present study aimed to identify MR-specific target genes in the hippocampus, a brain region where MR and GR are co-localised and play a role in the stress response. Using genome-wide binding of both receptor types, we previously identified MR-specific, MR-GR overlapping and GR-specific putative target genes. We now report altered gene expression levels of such genes in the hippocampus of forebrain MR knockout (fbMRKO) mice, killed at the time of their endogenous corticosterone peak. Of those genes associated with MR-specific binding, the most robust effect was a 50% reduction in Jun dimerization protein 2 (Jdp2) mRNA levels in fbMRKO mice. Down-regulation was also observed for the MR-specific Nitric oxide synthase 1 adaptor protein (Nos1ap) and Suv3 like RNA helicase (Supv3 l1). Interestingly, the classical glucocorticoid target gene FK506 binding protein 5 (Fkbp5), which is associated with MR and GR chromatin binding, was expressed at substantially lower levels in fbMRKO mice. Subsequently, hippocampal Jdp2 was confirmed to be up-regulated in a restraint stress model, posing Jdp2 as a bona fide MR target that is also responsive in an acute stress condition. Thus, we show that MR-selective DNA binding can reveal functional regulation of genes and further identify distinct MR-specific effector pathways.


Asunto(s)
Regulación de la Expresión Génica , Hipocampo/metabolismo , Receptores de Mineralocorticoides/fisiología , Animales , Sitios de Unión/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...