Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respir Res ; 25(1): 70, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317182

RESUMEN

BACKGROUND: Currently, there are no reliable clinical tools that allow non-invasive therapeutic support for patients with pulmonary arterial hypertension. This study aims to propose a low-frequency ultrasound device for pulmonary hypertension therapy and to demonstrate its potential. METHODS: A novel low-frequency ultrasound transducer has been developed. Due to its structural properties, it is excited by higher vibrational modes, which generate a signal capable of deeply penetrating biological tissues. A methodology for the artificial induction of pulmonary hypertension in sheep and for the assessment of lung physiological parameters such as blood oxygen concentration, pulse rate, and pulmonary blood pressure has been proposed. RESULTS: The results showed that exposure of the lungs to low-frequency ultrasound changed physiological parameters such as blood oxygen concentration, pulse rate and blood pressure. These parameters are most closely related to indicators of pulmonary hypertension (PH). The ultrasound exposure increased blood oxygen concentration over a 7-min period, while pulse rate and pulmonary blood pressure decreased over the same period. In anaesthetised sheep exposed to low-frequency ultrasound, a 10% increase in SpO2, a 10% decrease in pulse rate and an approximate 13% decrease in blood pressure were observed within 7 min. CONCLUSIONS: The research findings demonstrate the therapeutic efficiency of low-frequency ultrasound on hypertensive lungs, while also revealing insights into the physiological aspects of gas exchange within the pulmonary system.


Asunto(s)
Hipertensión Pulmonar , Humanos , Animales , Ovinos , Hipertensión Pulmonar/diagnóstico por imagen , Hipertensión Pulmonar/terapia , Pulmón/diagnóstico por imagen , Ultrasonografía , Presión Sanguínea , Oxígeno
2.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050668

RESUMEN

The safety of ultrasound exposure is very important for a patient's well-being. High-frequency (1-10 MHz) ultrasound waves are highly absorbed by biological tissue and have limited therapeutic effects on internal organs. This article presents the results of the development and application of a low-frequency (20-100 kHz) ultrasonic transducer for sonication of biological tissues. Using the methodology of digital twins, consisting of virtual and physical twins, an ultrasonic transducer has been developed that emits a focused ultrasound signal that penetrates into deeper biological tissues. For this purpose, the ring-shaped end surface of this transducer is excited not only by the main longitudinal vibrational mode, which is typical of the flat end surface transducers used to date, but also by higher mode radial vibrations. The virtual twin simulation shows that the acoustic signal emitted by the ring-shaped transducer, which is excited by a higher vibrational mode, is concentrated into a narrower and more precise acoustic wave that penetrates deeper into the biological tissue and affects only the part of the body to be treated, but not the whole body.


Asunto(s)
Sonicación , Ultrasonido , Humanos , Diseño de Equipo , Ultrasonografía , Transductores
3.
J Anim Sci Technol ; 65(1): 244-257, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37093951

RESUMEN

The study aimed to investigate the effect of low-frequency oscillations on the cow udder, milk parameters, and animal welfare during the automated milking process. The study's objective was to investigate the impact of low-frequency oscillations on the udder and teats' blood circulation by creating a mathematical model of mammary glands, using milkers and vibrators to analyze the theoretical dynamics of oscillations. The mechanical vibration device developed and tested in the study was mounted on a DeLaval automatic milking machine, which excited the udder with low-frequency oscillations, allowing the analysis of input parameters (temperature, oscillation amplitude) and using feedback data, changing the device parameters such as vibration frequency and duration. The experimental study was performed using an artificial cow's udder model with and without milk and a DeLaval milking machine, exciting the model with low-frequency harmonic oscillations (frequency range 15-60 Hz, vibration amplitude 2-5 mm). The investigation in vitro applying low-frequency of the vibration system's first-order frequencies in lateral (X) direction showed the low-frequency values of 23.5-26.5 Hz (effective frequency of the simulation analysis was 25.0 Hz). The tested values of the first-order frequency of the vibration system in the vertical (Y) direction were 37.5-41.5 Hz (effective frequency of the simulation analysis was 41.0 Hz), with higher amplitude and lower vibration damping. During in vivo experiments, while milking, the vibrator was inducing mechanical milking-similar vibrations in the udder. The vibrations were spreading to the entire udder and caused physiotherapeutic effects such as activated physiological processes and increased udder base temperature by 0.57°C (p < 0.001), thus increasing blood flow in the udder. Used low-frequency vibrations did not significantly affect milk yield, milk composition, milk quality indicators, and animal welfare. The investigation results showed that applying low-frequency vibration on a cow udder during automatic milking is a non-invasive, efficient method to stimulate blood circulation in the udder and improve teat and udder health without changing milk quality and production. Further studies will be carried out in the following research phase on clinical and subclinical mastitis cows.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA