Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Carbohydr Polym ; 255: 117477, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33436240

RESUMEN

The cell surface and extracellular matrix polysaccharide, heparan sulfate (HS) conveys chemical information to control crucial biological processes. HS chains are synthesized in a non-template driven process mainly in the Golgi apparatus, involving a large number of enzymes capable of subtly modifying its substitution pattern, hence, its interactions and biological effects. Changes in the localization of HS-modifying enzymes throughout the Golgi were found to correlate with changes in the structure of HS, rather than protein expression levels. Following BFA treatment, the HS-modifying enzymes localized preferentially in COPII vesicles and at the trans-Golgi. Shortly after heparin treatment, the HS-modifying enzyme moved from cis to trans-Golgi, which coincided with increased HS sulfation. Finally, it was shown that COPI subunits and Sec24 gene expression changed. Collectively, these findings demonstrate that knowledge of the ER-Golgi dynamics of HS-modifying enzymes via vesicular trafficking is a critical prerequisite for the complete delineation of HS biosynthesis.


Asunto(s)
Vesículas Cubiertas por Proteínas de Revestimiento/enzimología , Retículo Endoplásmico/enzimología , Aparato de Golgi/enzimología , Heparitina Sulfato/biosíntesis , Transporte Biológico/efectos de los fármacos , Brefeldino A/farmacología , Vesículas Cubiertas por Proteínas de Revestimiento/genética , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Retículo Endoplásmico/química , Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica , Aparato de Golgi/química , Aparato de Golgi/efectos de los fármacos , Heparina/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Transfección , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
2.
J Clin Med ; 9(2)2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32024172

RESUMEN

Mucopolysaccharidoses (MPS) are the group of lysosomal storage disorders caused by deficiencies of enzymes involved in the stepwise degradation of glycosaminoglycans. To identify brain pathology common for neurological MPS, we conducted a comprehensive analysis of brain cortex tissues from post-mortem autopsy materials of eight patients affected with MPS I, II, IIIA, IIIC, and IIID, and age-matched controls. Frozen brain tissues were analyzed for the abundance of glycosaminoglycans (heparan, dermatan, and keratan sulfates) by LC-MS/MS, glycosphingolipids by normal phase HPLC, and presence of inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor superfamily member 10 (TNFSF10) by Western blotting. Fixed tissues were stained for the markers for microgliosis, astrogliosis, misfolded proteins, impaired autophagy, and GM2ganglioside. Our results demonstrate that increase of heparan sulfate, decrease of keratan sulfate, and storage of simple  monosialogangliosides 2 and 3 (GM2 and GM3) as well as the neutralglycosphingolipid, LacCer, together with neuroinflammation and neuronal accumulation of misfolded proteins are the hallmarks of brain pathology in MPS patients. These biomarkers aresimilar to those reported in the corresponding mouse models, suggesting that the pathological mechanism is common for all neurological MPS in humans and mice.

3.
J Cell Physiol ; 233(4): 3176-3194, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28833096

RESUMEN

We investigated the role of glycosaminoglycans (GAGs) in the regulation of endothelial nitric oxide synthase (eNOS) activity in wild-type CHO-K1 cells and in xylosyltransferase-deficient CHO-745 cells. GAGs inhibit the integrin/FAK/PI3K/AKT signaling pathway in CHO-K1 cells, decreasing the phosphorylation of eNOS at Ser1177. Furthermore, in CHO-K1 cells, eNOS and PKCα are localized at sphingolipid- and cholesterol-rich domains in the plasma membrane called caveolae. At caveolae, PKCα activation stimulates the phosphorylation of eNOS on Thr495, resulting in further inhibition of NO production in these cells. In our data, CHO-745 cells generate approximately 12-fold more NO than CHO-K1 cells. Increased NO production in CHO-745 cells promotes higher rates of protein S-nitrosylation and protein tyrosine nitration. Regarding reactive oxygen species (ROS) production, CHO-745 cells show lower basal levels of superoxide (O2- ) than CHO-K1 cells. In addition, CHO-745 cells express higher levels of GPx, Trx1, and catalase than CHO-K1 cells, suggesting that CHO-745 cells are in a constitutive nitrosative/oxidative stress condition. Accordingly, we showed that CHO-745 cells are more sensitive to oxidant-induced cell death than CHO-K1 cells. The high concentration of NO and reactive oxygen species generated by CHO-745 cells can induce simultaneous mitochondrial biogenesis and antioxidant gene expression. These observations led us to propose that GAGs are part of a regulatory mechanism that participates in eNOS activation and consequently regulates nitrosative/oxidative stress in CHO cells.


Asunto(s)
Proteoglicanos de Heparán Sulfato/deficiencia , Espacio Intracelular/metabolismo , Óxido Nítrico/biosíntesis , Regulación hacia Arriba , Animales , Células CHO , Cricetinae , Cricetulus , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Oligopéptidos/metabolismo , Biogénesis de Organelos , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Fracciones Subcelulares/metabolismo
4.
Genet Mol Biol ; 34(3): 410-5, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21931511

RESUMEN

Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.

5.
Genet. mol. biol ; 34(3): 410-415, 2011. graf, tab
Artículo en Inglés | LILACS | ID: lil-595980

RESUMEN

Mucopolysaccharidoses (MPS) are rare lysosomal disorders caused by the deficiency of specific lysosomal enzymes responsible for glycosaminoglycan (GAG) degradation. Enzyme Replacement Therapy (ERT) has been shown to reduce accumulation and urinary excretion of GAG, and to improve some of the patients' clinical signs. We studied biochemical and molecular characteristics of nine MPS patients (two MPS I, four MPS II and three MPS VI) undergoing ERT in northern Brazil. The responsiveness of ERT was evaluated through urinary GAG excretion measurements. Patients were screened for eight common MPS mutations, using PCR, restriction enzyme tests and direct sequencing. Two MPS I patients had the previously reported mutation p.P533R. In the MPS II patients, mutation analysis identified the mutation p.R468W, and in the MPS VI patients, polymorphisms p.V358M and p.V376M were also found. After 48 weeks of ERT, biochemical analysis showed a significantly decreased total urinary GAG excretion in patients with MPS I (p < 0.01) and MPS VI (p < 0.01). Our findings demonstrate the effect of ERT on urinary GAG excretion and suggest the adoption of a screening strategy for genotyping MPS patients living far from the main reference centers.


Asunto(s)
Terapia de Reemplazo Enzimático , Glicosaminoglicanos , Mucopolisacaridosis , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...