Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; 148: 284-290, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30677422

RESUMEN

Recurrent panic attacks, comprising emotional and cardiovascular aversive responses, are common features in panic disorder, a subtype of anxiety disorder. The underlying brain circuitry includes nuclei of the hypothalamus, such as the dorsomedial hypothalamus (DMH). The endocannabinoid system has been proposed to modulate several biological processes in the hypothalamus. Thus, we tested the hypothesis that hypothalamic endocannabinoid signalling controls aversive responses in an animal model of panic attacks. Local infusion of NMDA into the DMH of rats induced panic-like behaviour. This effect was prevented by local, but not intraperitoneal, injection of a 2-arachidonoylglycerol (2-AG) hydrolysis inhibitor (MAGL inhibitor, URB602). The anandamide hydrolysis inhibitor (FAAH inhibitor), URB597, was ineffective. The anti-aversive action of URB602 was reversed by CB1 and CB2 antagonists (AM251 and AM630, respectively), and mimicked by CB1 and CB2 agonists (ACEA and JWH133, respectively). URB602 also prevented the cardiovascular effects of DMH-stimulation in anaesthetised animals. None of the treatments modified blood corticosterone levels. In conclusion, facilitation of 2-AG-signalling in the DMH modulates panic-like responses. The possible mechanisms comprise activation of both CB1 and CB2 receptors in this brain region.


Asunto(s)
Núcleo Hipotalámico Dorsomedial/fisiopatología , Endocannabinoides/fisiología , Trastorno de Pánico/fisiopatología , Animales , Ácidos Araquidónicos/farmacología , Benzamidas/farmacología , Compuestos de Bifenilo/antagonistas & inhibidores , Compuestos de Bifenilo/farmacología , Presión Sanguínea/efectos de los fármacos , Cannabinoides/farmacología , Carbamatos/farmacología , Corticosterona/sangre , Núcleo Hipotalámico Dorsomedial/efectos de los fármacos , Indoles/farmacología , Masculino , Microinyecciones , N-Metilaspartato/antagonistas & inhibidores , Trastorno de Pánico/inducido químicamente , Trastorno de Pánico/prevención & control , Piperidinas/farmacología , Pirazoles/farmacología , Ratas
2.
Naunyn Schmiedebergs Arch Pharmacol ; 389(1): 11-6, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26319049

RESUMEN

Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine D2 receptors. In addition to its antipsychotic activity, this compound blocks the effects of some psychostimulant drugs. It has not been verified, however, if aripiprazole interferes with the effects of caffeine. Hence, this study tested the hypothesis that aripiprazole prevents caffeine-induced hyperlocomotion and investigated the effects of these drugs on neural activity in the striatum. Male Swiss mice received injections of vehicle or antipsychotic drugs followed by vehicle or caffeine. Locomotion was analyzed in a circular arena and c-Fos protein expression was quantified in the dorsolateral, dorsomedial, and ventrolateral striatum, and in the core and shell regions of nucleus accumbens. Aripiprazole (0.1, 1, and 10 mg/kg) prevented caffeine (10 mg/kg)-induced hyperlocomotion at doses that do not change basal locomotion. Haloperidol (0.01, 0.03, and 0.1 mg/kg) also decreased caffeine-induced hyperlocomotion at all doses, although at the two higher doses, this compound reduced basal locomotion. Immunohistochemistry analysis showed that aripiprazole increases c-Fos protein expression in all regions studied, whereas caffeine did not alter c-Fos protein expression. Combined treatment of aripiprazole and caffeine resulted in a decrease in the number of c-Fos positive cells as compared to the group receiving aripiprazole alone. In conclusion, aripiprazole prevents caffeine-induced hyperlocomotion and increases neural activation in the striatum. This latter effect is reduced by subsequent administration of caffeine. These results advance our understanding on the pharmacological profile of aripiprazole.


Asunto(s)
Antipsicóticos/farmacología , Aripiprazol/farmacología , Cafeína/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cuerpo Estriado/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo
3.
Toxicol Appl Pharmacol ; 286(3): 178-87, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25933444

RESUMEN

Cocaine is an addictive substance with a potential to cause deleterious effects in the brain. The strategies for treating its neurotoxicity, however, are limited. Evidence suggests that the endocannabinoid system exerts neuroprotective functions against various stimuli. Thus, we hypothesized that inhibition of fatty acid amide hydrolase (FAAH), the main enzyme responsible for terminating the actions of the endocannabinoid anandamide, reduces seizures and cell death in the hippocampus in a model of cocaine intoxication. Male Swiss mice received injections of endocannabinoid-related compounds followed by the lowest dose of cocaine that induces seizures, electroencephalographic activity and cell death in the hippocampus. The molecular mechanisms were studied in primary cell culture of this structure. The FAAH inhibitor, URB597, reduced cocaine-induced seizures and epileptiform electroencephalographic activity. The cannabinoid CB1 receptor selective agonist, ACEA, mimicked these effects, whereas the antagonist, AM251, prevented them. URB597 also inhibited cocaine-induced activation and death of hippocampal neurons, both in animals and in primary cell culture. Finally, we investigated if the PI3K/Akt/ERK intracellular pathway, a cell surviving mechanism coupled to CB1 receptor, mediated these neuroprotective effects. Accordingly, URB597 injection increased ERK and Akt phosphorylation in the hippocampus. Moreover, the neuroprotective effect of this compound was reversed by the PI3K inhibitor, LY294002. In conclusion, the pharmacological facilitation of the anandamide/CB1/PI3K signaling protects the brain against cocaine intoxication in experimental models. This strategy may be further explored in the development of treatments for drug-induced neurotoxicity.


Asunto(s)
Cocaína/toxicidad , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Benzamidas/farmacología , Carbamatos/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Endocannabinoides/agonistas , Hipocampo/efectos de los fármacos , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Fármacos Neuroprotectores/farmacología , Receptor Cannabinoide CB1/agonistas , Transducción de Señal/fisiología
4.
Psychopharmacology (Berl) ; 232(9): 1545-53, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25388290

RESUMEN

RATIONALE: Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli. OBJECTIVES: The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks. METHODS: All drugs were infused into the dlPAG of rats. Local chemical stimulation with N-methyl-D-aspartate (NMDA, 1 nmol) was employed to induce panic-like behavioural and cardiovascular responses in freely moving and anaesthetized animals, respectively. The neuronal activity in the dlPAG was investigated by c-Fos immunohistochemistry. RESULTS: The selective CB1 receptor agonist, ACEA (0.005-0.5 pmol), prevented the NMDA-induced panic-like escape responses. More interestingly, increasing the local levels of endogenous anandamide with a fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3-3 nmol), prevented both the behavioural response and the increase in blood pressure induced by NMDA. The effect of URB597 (3 nmol) was reversed by the CB1 receptor antagonist, AM251 (0.1 nmol). Moreover, an otherwise ineffective and sub-threshold dose of NMDA (0.5 nmol) was able to induce a panic-like response if local CB1 receptors were previously blocked by AM251 (0.1 nmol). Finally, URB597 prevented the NMDA-induced neuronal activation of the dlPAG. CONCLUSIONS: The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.


Asunto(s)
Ansiedad/metabolismo , Ácidos Araquidónicos/metabolismo , Conducta Animal/efectos de los fármacos , Endocannabinoides/metabolismo , Trastorno de Pánico/metabolismo , Sustancia Gris Periacueductal/efectos de los fármacos , Alcamidas Poliinsaturadas/metabolismo , Amidohidrolasas/antagonistas & inhibidores , Animales , Ansiedad/inducido químicamente , Ácidos Araquidónicos/farmacología , Benzamidas/farmacología , Carbamatos/farmacología , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Masculino , N-Metilaspartato , Trastorno de Pánico/inducido químicamente , Piperidinas/farmacología , Pirazoles/farmacología , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/antagonistas & inhibidores
5.
Behav Pharmacol ; 25(5-6): 425-33, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25083569

RESUMEN

The endocannabinoid system comprises the CB1 and CB2 receptors (the targets of the Cannabis sativa compound delta-9-tetrahydrocannabinol), the endogenous ligands (endocannabinoids) arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, their synthesizing machinery and membrane transport system, and the hydrolyzing enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. The endocannabinoids may act on demand to confer protection against aversive stimuli, which suggests that increasing their brain levels may represent an approach for treatment of anxiety-related disorders. Thus, this article reviews the profile of endocannabinoid reuptake and hydrolysis inhibitors in experimental tests predictive of anxiolytic activity. The FAAH inhibitors and the blockers of anandamide transport, in contrast to direct CB1 receptor agonists, induce anxiolytic effects at doses that do not interfere with motor activity. MAGL inhibitors also reduce anxiety-like behavior, although they are more likely to impair motor activity. Regarding their mechanisms, increasing anandamide levels induce responses mediated by the CB1 receptor and occluded by the transient receptor potential vanilloid type-1 channels, whereas the effects of increasing 2-arachidonoyl glycerol depend on both CB1 and CB2 receptors. Their neuroanatomical targets include various structures related to anxiety and fear responses. Understanding the pharmacological properties of FAAH and MAGL inhibitors may contribute toward the development of new anxiolytic interventions based on the endocannabinoid system.


Asunto(s)
Ansiolíticos/farmacología , Endocannabinoides/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Descubrimiento de Drogas , Humanos , Hidrólisis/efectos de los fármacos
6.
Cell Tissue Res ; 354(1): 119-25, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23584609

RESUMEN

Panic disorder (PD) is a subtype of anxiety disorder in which the core phenomenon is the spontaneous occurrence of panic attacks. Although studies with laboratory animals have been instrumental for the understanding of its neurobiology and treatment, few review articles have focused on the validity of the currently used animal models for studying this psychopathology. Therefore, the aim of the present paper is to discuss the strengths and limits of these models in terms of face, construct and predictive validity. Based on the hypothesis that panic attacks are related to defensive responses elicited by proximal threat, most animal models measure the escape responses induced by specific stimuli. Some apply electrical or chemical stimulation to brain regions proposed to modulate fear and panic responses, such as the dorsal periaqueductal grey or the medial hypothalamus. Other models focus on the behavioural consequences caused by the exposure of rodents to ultrasound or natural predators. Finally, the elevated T-maze associates a one-way escape response from an open arm with panic attacks. Despite some limitations, animal models are essential for a better understanding of the neurobiology and pharmacology of PD and for discovering more effective treatments.


Asunto(s)
Modelos Animales de Enfermedad , Trastorno de Pánico , Animales , Humanos , Roedores
7.
Basic Clin Pharmacol Toxicol ; 112(5): 319-24, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23157340

RESUMEN

Aripiprazole is an antipsychotic that acts as a partial agonist at dopamine receptors. As the effects of most drugs of abuse converge to enhance dopamine-mediated neurotransmission, the present study was designed to test the hypothesis that aripiprazole would inhibit the acute effects of ethanol, a widely abused substance. Male Swiss mice received acute injections and were evaluated for motor activity in three distinct tests. In the open field, ethanol (1.5, 2.5 and 3.5 g/kg) induced an increase in locomotion in a U-shaped dose-related fashion, whereas aripiprazole (0.1, 1 and 10 mg/kg) did not affect this parameter. All the doses of the antipsychotic were able to prevent the stimulant effects of 2.5 g/kg of ethanol. In the rotarod test, ethanol (2.5 and 3.5 g/kg) reduced the latency to fall from the apparatus, an effect also observed with the higher dose of aripiprazole. Contrary to what was observed in the open field, this antipsychotic did not interfere with the effects of ethanol in motor balance. Finally, we tested animals in the wire hang test, in which ethanol, but not aripiprazole, reduced latency to fall at all doses. In this test, aripiprazole did not change ethanol effects. The present data lead to the conclusion that aripiprazole prevents the stimulant effects of ethanol on locomotion, without interfering with the motor impairment induced by this drug.


Asunto(s)
Antipsicóticos/farmacología , Depresores del Sistema Nervioso Central/toxicidad , Etanol/toxicidad , Neuronas Motoras/efectos de los fármacos , Piperazinas/farmacología , Quinolonas/farmacología , Animales , Aripiprazol , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Conducta Exploratoria/efectos de los fármacos , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Neuronas Motoras/patología , Equilibrio Postural/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA