Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomed Mater Res A ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488327

RESUMEN

Estrogen deficiency, long-term immobilization, and/or aging are commonly related to bone mass loss, thus increasing the risk of fractures. One option for bone replacement in injuries caused by either traumas or pathologies is the use of orthopedic cement based on polymethylmethacrylate (PMMA). Nevertheless, its reduced bioactivity may induce long-term detachment from the host tissue, resulting in the failure of the implant. In view of this problem, we developed an alternative PMMA-based porous cement (pPMMA) that favors cell invasion and improves osteointegration with better biocompatibility. The cement composition was changed by adding bioactive strontium-nanoparticles that mimic the structure of bone apatite. The nanoparticles were characterized regarding their physical-chemical properties, and their effects on osteoblasts and osteoclast cultures were assessed. Initial in vivo tests were also performed using 16 New Zealand rabbits as animal models, in which the pPMMA-cement containing the strontium nanoparticles were implanted. We showed that the apatite nanoparticles in which 90% of Ca2+ ions were substituted by Sr2+ (NanoSr 90%) upregulated TNAP activity and increased matrix mineralization. Moreover, at the molecular level, NanoSr 90% upregulated the mRNA expression levels of, Sp7, and OCN. Runx2 was increased at both mRNA and protein levels. In parallel, in vivo tests revealed that pPMMA-cement containing NanoSr 90%, upregulated two markers of bone maturation, OCN and BMP2, as well as the formation of apatite minerals after implantation in the femur of rabbits. The overall data support that strontium nanoparticles hold the potential to up-regulate mineralization in osteoblasts when associated with synthetic biomaterials.

2.
Platelets ; 33(8): 1175-1184, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-35591762

RESUMEN

The current study evaluated the healing of critical-size defects (CSD) created in rat calvaria treated with platelet concentrates produced by high-speed (Leukocyte- and Platelet-Rich Fibrin - L-PRF) and low-speed (Advanced Platelet-Rich Fibrin - A-PRF) protocols of centrifugation. Twenty-four rats were distributed into three groups: Control, L-PRF, and A-PRF. Five mm diameter CSD were created on the animals' calvaria. The defects of the L-PRF and A-PRF groups were filled with 0.01 ml of L-PRF and A-PRF, respectively. The control group defects were filled with a blood clot only. All animals were euthanized on the 35th postoperative day. Histomorphometric and microtomographic analyses were then performed. The L-PRF and A-PRF groups had significantly higher bone volume and neoformed bone area than those of the control group and lowered bone porosity values (p < .05). No significant differences were observed between A-PRF and L-PRF groups for the analyzed parameters. Therefore, it can be concluded that i) L-PRF and A-PRF potentiated the healing of CSD in rat calvaria; ii) high and low-speed centrifugation protocols did not produce PRF matrices with different biological impacts on the amount of bone neoformation.


Asunto(s)
Fibrina Rica en Plaquetas , Animales , Centrifugación/métodos , Leucocitos , Ratas , Cráneo/cirugía , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...