Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Nature ; 627(8003): 399-406, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38448581

RESUMEN

Immune cells rely on transient physical interactions with other immune and non-immune populations to regulate their function1. To study these 'kiss-and-run' interactions directly in vivo, we previously developed LIPSTIC (labelling immune partnerships by SorTagging intercellular contacts)2, an approach that uses enzymatic transfer of a labelled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ T helper cells and antigen-presenting cells, however. Here we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the steady-state cellular partners of regulatory T cells and identify germinal centre-resident T follicular helper cells on the basis of their ability to interact cognately with germinal centre B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalogue of the immune populations that physically interact with intestinal epithelial cells at the steady state and profile the evolution of the interactome of lymphocytic choriomeningitis virus-specific CD8+ T cells in multiple organs following systemic infection. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.


Asunto(s)
Linfocitos B , Linfocitos T CD8-positivos , Comunicación Celular , Células Dendríticas , Células Epiteliales , Células T Auxiliares Foliculares , Linfocitos T Reguladores , Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Comunicación Celular/inmunología , Células Dendríticas/citología , Células Dendríticas/inmunología , Ligandos , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Células T Auxiliares Foliculares/citología , Células T Auxiliares Foliculares/inmunología , Linfocitos B/citología , Linfocitos B/inmunología , Centro Germinal/citología , Análisis de Expresión Génica de una Sola Célula , Células Epiteliales/citología , Células Epiteliales/inmunología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Especificidad de Órganos
2.
bioRxiv ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38370696

RESUMEN

Immunization with mosaic-8b [60-mer nanoparticles presenting 8 SARS-like betacoronavirus (sarbecovirus) receptor-binding domains (RBDs)] elicits more broadly cross-reactive antibodies than homotypic SARS-CoV-2 RBD-only nanoparticles and protects against sarbecoviruses. To investigate original antigenic sin (OAS) effects on mosaic-8b efficacy, we evaluated effects of prior COVID-19 vaccinations in non-human primates and mice on sarbecovirus response breadths elicited by mosaic-8b, admix-8b (8 homotypics), and homotypic SARS-CoV-2, finding greatest cross-reactivity for mosaic-8b. As demonstrated by molecular fate-mapping in which antibodies derived from specific cohorts of B cells are differentially detected, B cells primed by WA1 spike mRNA-LNP dominated antibody responses after RBD-nanoparticle boosting. While mosaic-8b- and homotypic-nanoparticles boosted cross-reactive antibodies, de novo antibodies were predominantly induced with mosaic-8b boosting, and these were specific for variant RBDs with increased identity to RBDs on mosaic-8b. These results inform OAS mechanisms and support using mosaic-8b to protect COVID-19 vaccinated/infected humans against as-yet-unknown SARS-CoV-2 variants and animal sarbecoviruses with human spillover potential.

3.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873082

RESUMEN

Immunoglobulin A (IgA) is the most abundant antibody isotype produced across mammals and plays a specialized role in mucosal homeostasis 1 . Constantly secreted into the lumen of the intestine, IgA binds commensal microbiota to regulate their colonization and function 2,3 , with unclear implications for health. IgA deficiency is common in humans but is difficult to study due to its complex etiology and comorbidities 4-8 . Using genetically and environmentally controlled mice, here we show that IgA-deficient animals have a baseline alteration in the colon epithelium that increases susceptibility to multiple models of colorectal cancer. Transcriptome, imaging, and flow cytometry-based analyses revealed that, in the absence of IgA, colonic epithelial cells induce antibacterial factors and accelerate cell cycling in response to the microbiota. Oral treatment with IgA was sufficient to suppress aberrant epithelial proliferation independently of bacterial binding, suggesting that IgA provides a feedback signal to epithelial cells in parallel with its known roles in microbiome shaping. In a primary colonic organoid culture system, IgA directly suppresses epithelial growth. Conversely, the susceptibility of IgA-deficient mice to colorectal cancer was reversed by Notch inhibition to suppress the absorptive colonocyte developmental program, or by inhibition of the cytokine MIF, the receptor for which was upregulated in stem cells of IgA-deficient animals. These studies demonstrate a homeostatic function for IgA in tempering physiological epithelial responses to microbiota to maintain mucosal health.

4.
Nat Microbiol ; 8(6): 1051-1063, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37188812

RESUMEN

Human monoclonal antibodies (mAbs) that target the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein have been isolated from convalescent individuals and developed into therapeutics for SARS-CoV-2 infection. However, therapeutic mAbs for SARS-CoV-2 have been rendered obsolete by the emergence of mAb-resistant virus variants. Here we report the generation of a set of six human mAbs that bind the human angiotensin-converting enzyme-2 (hACE2) receptor, rather than the SARS-CoV-2 spike protein. We show that these antibodies block infection by all hACE2 binding sarbecoviruses tested, including SARS-CoV-2 ancestral, Delta and Omicron variants at concentrations of ~7-100 ng ml-1. These antibodies target an hACE2 epitope that binds to the SARS-CoV-2 spike, but they do not inhibit hACE2 enzymatic activity nor do they induce cell-surface depletion of hACE2. They have favourable pharmacology, protect hACE2 knock-in mice against SARS-CoV-2 infection and should present a high genetic barrier to the acquisition of resistance. These antibodies should be useful prophylactic and treatment agents against any current or future SARS-CoV-2 variants and might be useful to treat infection with any hACE2-binding sarbecoviruses that emerge in the future.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Animales , Ratones , SARS-CoV-2 , COVID-19/prevención & control , Anticuerpos Monoclonales/farmacología
5.
Methods Mol Biol ; 2618: 71-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36905509

RESUMEN

Interactions between different cell types are key for immune function. Traditionally, interactions have been investigated in vivo by intravital two-photon microscopy, but the molecular characterization of the cells participating in a specific interaction is limited by the inability to retrieve the cells for downstream analysis. We recently developed an approach to label cells undergoing specific interactions in vivo, which we called LIPSTIC (Labeling Immune Partnership by Sortagging Intercellular Contacts). Here, we provide detailed instructions on how to track CD40-CD40L interactions between dendritic cells (DCs) and CD4+ T cells using genetically engineered LIPSTIC mice. This protocol requires expertise in animal experimentation and multicolor flow cytometry. Once mouse crossing has been achieved, it takes 3 days or more to complete, depending on the kinetics of the interactions that the researcher wishes to investigate.


Asunto(s)
Ligando de CD40 , Linfocitos T , Ratones , Animales , Linfocitos T/metabolismo , Ligando de CD40/metabolismo , Antígenos CD40 , Células Dendríticas , Linfocitos T CD4-Positivos
6.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36993443

RESUMEN

Cellular interactions are essential for tissue organization and functionality. In particular, immune cells rely on direct and usually transient interactions with other immune and non-immune populations to specify and regulate their function. To study these "kiss-and-run" interactions directly in vivo, we previously developed LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts), an approach that uses enzymatic transfer of a labeled substrate between the molecular partners CD40L and CD40 to label interacting cells. Reliance on this pathway limited the use of LIPSTIC to measuring interactions between CD4+ helper T cells and antigen presenting cells, however. Here, we report the development of a universal version of LIPSTIC (uLIPSTIC), which can record physical interactions both among immune cells and between immune and non-immune populations irrespective of the receptors and ligands involved. We show that uLIPSTIC can be used, among other things, to monitor the priming of CD8+ T cells by dendritic cells, reveal the cellular partners of regulatory T cells in steady state, and identify germinal center (GC)-resident T follicular helper (Tfh) cells based on their ability to interact cognately with GC B cells. By coupling uLIPSTIC with single-cell transcriptomics, we build a catalog of the immune populations that physically interact with intestinal epithelial cells (IECs) and find evidence of stepwise acquisition of the ability to interact with IECs as CD4+ T cells adapt to residence in the intestinal tissue. Thus, uLIPSTIC provides a broadly useful technology for measuring and understanding cell-cell interactions across multiple biological systems.

7.
Nature ; 615(7952): 482-489, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646114

RESUMEN

The protective efficacy of serum antibodies results from the interplay of antigen-specific B cell clones of different affinities and specificities. These cellular dynamics underlie serum-level phenomena such as original antigenic sin (OAS)-a proposed propensity of the immune system to rely repeatedly on the first cohort of B cells engaged by an antigenic stimulus when encountering related antigens, in detriment to the induction of de novo responses1-5. OAS-type suppression of new, variant-specific antibodies may pose a barrier to vaccination against rapidly evolving viruses such as influenza and SARS-CoV-26,7. Precise measurement of OAS-type suppression is challenging because cellular and temporal origins cannot readily be ascribed to antibodies in circulation; its effect on subsequent antibody responses therefore remains unclear5,8. Here we introduce a molecular fate-mapping approach with which serum antibodies derived from specific cohorts of B cells can be differentially detected. We show that serum responses to sequential homologous boosting derive overwhelmingly from primary cohort B cells, while later induction of new antibody responses from naive B cells is strongly suppressed. Such 'primary addiction' decreases sharply as a function of antigenic distance, allowing reimmunization with divergent viral glycoproteins to produce de novo antibody responses targeting epitopes that are absent from the priming variant. Our findings have implications for the understanding of OAS and for the design and testing of vaccines against evolving pathogens.


Asunto(s)
Formación de Anticuerpos , Linfocitos B , Inmunización Secundaria , Humanos , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Vacunas contra la Influenza/inmunología , SARS-CoV-2/inmunología , Vacunación , Linfocitos B/inmunología , Vacunas Virales/inmunología
8.
Science ; 379(6629): eabj7412, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36656933

RESUMEN

Multicellular life requires altruistic cooperation between cells. The adaptive immune system is a notable exception, wherein germinal center B cells compete vigorously for limiting positive selection signals. Studying primary human lymphomas and developing new mouse models, we found that mutations affecting BTG1 disrupt a critical immune gatekeeper mechanism that strictly limits B cell fitness during antibody affinity maturation. This mechanism converted germinal center B cells into supercompetitors that rapidly outstrip their normal counterparts. This effect was conferred by a small shift in MYC protein induction kinetics but resulted in aggressive invasive lymphomas, which in humans are linked to dire clinical outcomes. Our findings reveal a delicate evolutionary trade-off between natural selection of B cells to provide immunity and potentially dangerous features that recall the more competitive nature of unicellular organisms.


Asunto(s)
Linfocitos B , Transformación Celular Neoplásica , Linfoma de Células B Grandes Difuso , Proteínas de Neoplasias , Animales , Humanos , Ratones , Afinidad de Anticuerpos/genética , Linfocitos B/patología , Centro Germinal , Mutación , Proteínas de Neoplasias/genética , Linfoma de Células B Grandes Difuso/genética , Transformación Celular Neoplásica/genética , Selección Genética
9.
Cell ; 186(1): 131-146.e13, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36565697

RESUMEN

Germinal centers (GCs) form in secondary lymphoid organs in response to infection and immunization and are the source of affinity-matured B cells. The duration of GC reactions spans a wide range, and long-lasting GCs (LLGCs) are potentially a source of highly mutated B cells. We show that rather than consisting of continuously evolving B cell clones, LLGCs elicited by influenza virus or SARS-CoV-2 infection in mice are sustained by progressive replacement of founder clones by naive-derived invader B cells that do not detectably bind viral antigens. Rare founder clones that resist replacement for long periods are enriched in clones with heavily mutated immunoglobulins, including some with very high affinity for antigen, that can be recalled by boosting. Our findings reveal underappreciated aspects of the biology of LLGCs generated by respiratory virus infection and identify clonal replacement as a potential constraint on the development of highly mutated antibodies within these structures.


Asunto(s)
Linfocitos B , Centro Germinal , Infecciones por Virus ARN , Animales , Ratones , Linfocitos B/citología , Linfocitos B/inmunología , Células Clonales , COVID-19 , Centro Germinal/citología , Centro Germinal/inmunología , SARS-CoV-2 , Gripe Humana , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/virología
10.
bioRxiv ; 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38168231

RESUMEN

Re-exposure to an antigen generates serum antibody responses that greatly exceed in magnitude those elicited by primary antigen encounter, while simultaneously driving the formation of recall germinal centers (GCs). Although recall GCs in mice are composed almost entirely of naïve B cells, recall antibody titers derive overwhelmingly from memory B cells, suggesting a division between cellular and serum compartments. Here, we show that this schism is at least partly explained by a marked decrease in the ability of recall GC B cells to detectably bind antigen. Variant priming and plasmablast ablation experiments show that this decrease is largely due to suppression by pre-existing antibody, whereas hapten-carrier experiments reveal a role for memory T cell help in allowing B cells with undetectable antigen binding to access GCs. We propose a model in which antibody-mediated feedback steers recall GC B cells away from previously targeted epitopes, thus enabling specific targeting of variant epitopes.

11.
Front Immunol ; 13: 1007080, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451809

RESUMEN

Efficient mouse models to study SARS-CoV-2 infection are critical for the development and assessment of vaccines and therapeutic approaches to mitigate the current pandemic and prevent reemergence of COVID-19. While the first generation of mouse models allowed SARS-CoV-2 infection and pathogenesis, they relied on ectopic expression and non-physiological levels of human angiotensin-converting enzyme 2 (hACE2). Here we generated a mouse model carrying the minimal set of modifications necessary for productive infection with multiple strains of SARS-CoV-2. Substitution of only three amino acids in the otherwise native mouse Ace2 locus (Ace2 TripleMutant or Ace2™), was sufficient to render mice susceptible to both SARS-CoV-2 strains USA-WA1/2020 and B.1.1.529 (Omicron). Infected Ace2™ mice exhibited weight loss and lung damage and inflammation, similar to COVID-19 patients. Previous exposure to USA-WA1/2020 or mRNA vaccination generated memory B cells that participated in plasmablast responses during breakthrough B.1.1.529 infection. Thus, the Ace2™ mouse replicates human disease after SARS-CoV-2 infection and provides a tool to study immune responses to sequential infections in mice.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ratones , Animales , Enzima Convertidora de Angiotensina 2/genética , Modelos Animales de Enfermedad , Pandemias
12.
Adv Immunol ; 155: 95-131, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36357013

RESUMEN

Most antibody produced by humans originates from mucosal B cell responses. The rules, mechanisms, and outcomes of this process are distinct from B cell responses to infection. Within the context of the intestine, we discuss the induction of follicular B cell responses by microbiota, the development and maintenance of mucosal antibody-secreting cells, and the unusual impacts of mucosal antibody on commensal bacteria. Much remains to be learned about the interplay between B cells and the microbiota, but past and present work hints at a complex, nuanced relationship that may be critical to the way the mammalian gut fosters a beneficial microbial ecosystem.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Mucosa Intestinal , Inmunoglobulina A , Ecosistema , Linfocitos B , Inmunidad Mucosa , Mamíferos
14.
bioRxiv ; 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36093344

RESUMEN

The ability of serum antibody to protect against pathogens arises from the interplay of antigen-specific B cell clones of different affinities and fine specificities. These cellular dynamics are ultimately responsible for serum-level phenomena such as antibody imprinting or "Original Antigenic Sin" (OAS), a proposed propensity of the immune system to rely repeatedly on the first cohort of B cells that responded to a stimulus upon exposure to related antigens. Imprinting/OAS is thought to pose a barrier to vaccination against rapidly evolving viruses such as influenza and SARS-CoV-2. Precise measurement of the extent to which imprinting/OAS inhibits the recruitment of new B cell clones by boosting is challenging because cellular and temporal origins cannot readily be assigned to antibodies in circulation. Thus, the extent to which imprinting/OAS impacts the induction of new responses in various settings remains unclear. To address this, we developed a "molecular fate-mapping" approach in which serum antibodies derived from specific cohorts of B cells can be differentially detected. We show that, upon sequential homologous boosting, the serum antibody response strongly favors reuse of the first cohort of B cell clones over the recruitment of new, naÏve-derived B cells. This "primary addiction" decreases as a function of antigenic distance, allowing secondary immunization with divergent influenza virus or SARS-CoV-2 glycoproteins to overcome imprinting/OAS by targeting novel epitopes absent from the priming variant. Our findings have implications for the understanding of imprinting/OAS, and for the design and testing of vaccines aimed at eliciting antibodies to evolving antigens.

15.
Science ; 377(6606): 660-666, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35926021

RESUMEN

The microbiome contributes to the development and maturation of the immune system. In response to commensal bacteria, intestinal CD4+ T lymphocytes differentiate into functional subtypes with regulatory or effector functions. The development of small intestine intraepithelial lymphocytes that coexpress CD4 and CD8αα homodimers (CD4IELs) depends on the microbiota. However, the identity of the microbial antigens recognized by CD4+ T cells that can differentiate into CD4IELs remains unknown. We identified ß-hexosaminidase, a conserved enzyme across commensals of the Bacteroidetes phylum, as a driver of CD4IEL differentiation. In a mouse model of colitis, ß-hexosaminidase-specific lymphocytes protected against intestinal inflammation. Thus, T cells of a single specificity can recognize a variety of abundant commensals and elicit a regulatory immune response at the intestinal mucosa.


Asunto(s)
Bacteroidetes , Linfocitos T CD4-Positivos , Colitis , Mucosa Intestinal , beta-N-Acetilhexosaminidasas , Animales , Bacteroidetes/enzimología , Bacteroidetes/inmunología , Linfocitos T CD4-Positivos/inmunología , Antígenos CD8/inmunología , Colitis/inmunología , Colitis/microbiología , Modelos Animales de Enfermedad , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , beta-N-Acetilhexosaminidasas/inmunología
16.
Annu Rev Immunol ; 40: 413-442, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35113731

RESUMEN

Germinal centers (GCs) are microanatomical sites of B cell clonal expansion and antibody affinity maturation. Therein, B cells undergo the Darwinian process of somatic diversification and affinity-driven selection of immunoglobulins that produces the high-affinity antibodies essential for effective humoral immunity. Here, we review recent developments in the field of GC biology, primarily as it pertains to GCs induced by infection or immunization. First, we summarize the phenotype and function of the different cell types that compose the GC, focusing on GC B cells. Then, we review the cellular and molecular bases of affinity-dependent selection within the GC and the export of memory and plasma cells. Finally, we present an overview of the emerging field of GC clonal dynamics, focusing on how GC and post-GC selection shapes the diversity of antibodies secreted into serum.


Asunto(s)
Linfocitos B , Centro Germinal , Animales , Anticuerpos , Afinidad de Anticuerpos , Humanos , Inmunidad Humoral
17.
Immunol Rev ; 306(1): 234-243, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34825386

RESUMEN

Germinal centers (GCs) are the site of antibody affinity maturation, a fundamental immunological process that increases the potency of antibodies and thereby their ability to protect against infection. GC biology is highly dynamic in both time and space, making it ideally suited for intravital imaging. Using multiphoton laser scanning microscopy (MPLSM), the field has gained insight into the molecular, cellular, and structural changes and movements that coordinate affinity maturation in real time in their native environment. On the other hand, several limitations of MPLSM have had to be overcome to allow full appreciation of GC events taking place across different timescales. Here, we review the technical advances afforded by intravital imaging and their contributions to our understanding of GC biology.


Asunto(s)
Linfocitos B , Centro Germinal , Anticuerpos , Afinidad de Anticuerpos , Diagnóstico por Imagen , Humanos
18.
Rev Saude Publica ; 55: 78, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34816981

RESUMEN

OBJECTIVE: To describe the evolution of seropositivity in the State of Rio Grande do Sul, Brazil, through 10 consecutive surveys conducted between April 2020 and April 2021. METHODS: Nine cities covering all regions of the State were studied, 500 households in each city. One resident in each household was randomly selected for testing. In survey rounds 1-8 we used the rapid WONDFO SARS-CoV-2 Antibody Test (Wondfo Biotech Co., Guangzhou, China). In rounds 9-10, we used a direct ELISA test that identifies IgG to the viral S protein (S-UFRJ). In terms of social distancing, individuals were asked three questions, from which we generated an exposure score using principal components analysis. RESULTS: Antibody prevalence in early April 2020 was 0.07%, increasing to 10.0% in February 2021, and to 18.2% in April 2021. In round 10, self-reported whites showed the lowest seroprevalence (17.3%), while indigenous individuals presented the highest (44.4%). Seropositivity increased by 40% when comparing the most with the least exposed. CONCLUSIONS: The proportion of the population already infected by SARS-Cov-2 in the state is still far from any perspective of herd immunity and the infection affects population groups in very different levels.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Brasil/epidemiología , Humanos , Estudios Seroepidemiológicos
19.
Science ; 373(6552)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34437125

RESUMEN

Germinal centers (GCs) are the site of immunoglobulin somatic hypermutation and affinity maturation, processes essential to an effective antibody response. The formation of GCs has been studied in detail, but less is known about what leads to their regression and eventual termination, factors that ultimately limit the extent to which antibodies mature within a single reaction. We show that contraction of immunization-induced GCs is immediately preceded by an acute surge in GC-resident Foxp3+ T cells, attributed at least partly to up-regulation of the transcription factor Foxp3 by T follicular helper (TFH) cells. Ectopic expression of Foxp3 in TFH cells is sufficient to decrease GC size, implicating the natural up-regulation of Foxp3 by TFH cells as a potential regulator of GC lifetimes.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Factores de Transcripción Forkhead/genética , Centro Germinal/inmunología , Células T Auxiliares Foliculares/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Linfocitos T CD4-Positivos/fisiología , Factores de Transcripción Forkhead/metabolismo , Genes Codificadores de los Receptores de Linfocitos T , Centro Germinal/citología , Inmunización , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de la Célula Individual , Células T Auxiliares Foliculares/inmunología , Linfocitos T Reguladores/fisiología , Regulación hacia Arriba
20.
Immunity ; 54(10): 2288-2304.e7, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34437840

RESUMEN

Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses. One was equivalent to conventional NK (cNK) cells while the other was transcriptionally similar to type 1 innate lymphoid cells (ILC1s). ILC1-like NK cells showed splenic residency and strong cytokine production but also recognized and killed MCMV-infected cells, guided by activating receptor Ly49H. Moreover, they induced clustering of conventional type 1 dendritic cells and facilitated antigen-specific T cell priming early during MCMV infection, which depended on Ly49H and the NK cell-intrinsic expression of transcription factor Batf3. Thereby, ILC1-like NK cells bridge innate and adaptive viral recognition and unite critical features of cNK cells and ILC1s.


Asunto(s)
Inmunidad Adaptativa/inmunología , Linaje de la Célula/inmunología , Infecciones por Herpesviridae/inmunología , Inmunidad Innata/inmunología , Células Asesinas Naturales/inmunología , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Muromegalovirus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...