Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Genet ; 18(9): e1010372, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36178933

RESUMEN

Homeobox genes are prominent regulators of neuronal identity, but the extent to which their function has been probed in animal nervous systems remains limited. In the nematode Caenorhabditis elegans, each individual neuron class is defined by the expression of unique combinations of homeobox genes, prompting the question of whether each neuron class indeed requires a homeobox gene for its proper identity specification. We present here progress in addressing this question by extending previous mutant analysis of homeobox gene family members and describing multiple examples of homeobox gene function in different parts of the C. elegans nervous system. To probe homeobox function, we make use of a number of reporter gene tools, including a novel multicolor reporter transgene, NeuroPAL, which permits simultaneous monitoring of the execution of multiple differentiation programs throughout the entire nervous system. Using these tools, we add to the previous characterization of homeobox gene function by identifying neuronal differentiation defects for 14 homeobox genes in 24 distinct neuron classes that are mostly unrelated by location, function and lineage history. 12 of these 24 neuron classes had no homeobox gene function ascribed to them before, while in the other 12 neuron classes, we extend the combinatorial code of transcription factors required for specifying terminal differentiation programs. Furthermore, we demonstrate that in a particular lineage, homeotic identity transformations occur upon loss of a homeobox gene and we show that these transformations are the result of changes in homeobox codes. Combining the present with past analyses, 113 of the 118 neuron classes of C. elegans are now known to require a homeobox gene for proper execution of terminal differentiation programs. Such broad deployment indicates that homeobox function in neuronal identity specification may be an ancestral feature of animal nervous systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciación Celular/genética , Proteínas de Unión al ADN/genética , Empleo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Elife ; 112022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35324425

RESUMEN

Overarching themes in the terminal differentiation of the enteric nervous system, an autonomously acting unit of animal nervous systems, have so far eluded discovery. We describe here the overall regulatory logic of enteric nervous system differentiation of the nematode Caenorhabditis elegans that resides within the foregut (pharynx) of the worm. A C. elegans homolog of the Drosophila Sine oculis homeobox gene, ceh-34, is expressed in all 14 classes of interconnected pharyngeal neurons from their birth throughout their life time, but in no other neuron type of the entire animal. Constitutive and temporally controlled ceh-34 removal shows that ceh-34 is required to initiate and maintain the neuron type-specific terminal differentiation program of all pharyngeal neuron classes, including their circuit assembly. Through additional genetic loss of function analysis, we show that within each pharyngeal neuron class, ceh-34 cooperates with different homeodomain transcription factors to individuate distinct pharyngeal neuron classes. Our analysis underscores the critical role of homeobox genes in neuronal identity specification and links them to the control of neuronal circuit assembly of the enteric nervous system. Together with the pharyngeal nervous system simplicity as well as its specification by a Sine oculis homolog, our findings invite speculations about the early evolution of nervous systems.


Asunto(s)
Proteínas de Caenorhabditis elegans , Sistema Nervioso Entérico , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Factores de Transcripción , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervioso Entérico/embriología , Sistema Nervioso Entérico/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Genes Homeobox , Proteínas de Homeodominio/metabolismo , Faringe , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
MicroPubl Biol ; 20212021.
Artículo en Inglés | MEDLINE | ID: mdl-34604715

RESUMEN

Single neuron-specific drivers are important tools for visualizing neuron anatomy, manipulating neuron activity and gene rescue experiments. We report here that genomic regions upstream of the C. elegans bHLH-PAS gene hlh-34 can be used to drive gene expression exclusively in the AVH interneuron pair and not, as previously reported, the AVJ interneuron pair.

4.
Cell ; 184(16): 4329-4347.e23, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34237253

RESUMEN

We have produced gene expression profiles of all 302 neurons of the C. elegans nervous system that match the single-cell resolution of its anatomy and wiring diagram. Our results suggest that individual neuron classes can be solely identified by combinatorial expression of specific gene families. For example, each neuron class expresses distinct codes of ∼23 neuropeptide genes and ∼36 neuropeptide receptors, delineating a complex and expansive "wireless" signaling network. To demonstrate the utility of this comprehensive gene expression catalog, we used computational approaches to (1) identify cis-regulatory elements for neuron-specific gene expression and (2) reveal adhesion proteins with potential roles in process placement and synaptic specificity. Our expression data are available at https://cengen.org and can be interrogated at the web application CengenApp. We expect that this neuron-specific directory of gene expression will spur investigations of underlying mechanisms that define anatomy, connectivity, and function throughout the C. elegans nervous system.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sistema Nervioso/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Colorantes Fluorescentes/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Larva/metabolismo , Neuronas/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Motivos de Nucleótidos/genética , RNA-Seq , Secuencias Reguladoras de Ácidos Nucleicos/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción Genética
5.
Genetics ; 215(3): 665-681, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32444379

RESUMEN

We explore here the cis-regulatory logic that dictates gene expression in specific cell types in the nervous system. We focus on a set of eight genes involved in the synthesis, transport, and breakdown of three neurotransmitter systems: acetylcholine (unc-17/VAChT, cha-1/ChAT, cho-1/ChT, and ace-2/AChE), glutamate (eat-4/VGluT), and γ-aminobutyric acid (unc-25/GAD, unc-46/LAMP, and unc-47/VGAT). These genes are specifically expressed in defined subsets of cells in the nervous system. Through transgenic reporter gene assays, we find that the cellular specificity of expression of all of these genes is controlled in a modular manner through distinct cis-regulatory elements, corroborating the previously inferred piecemeal nature of specification of neurotransmitter identity. This modularity provides the mechanistic basis for the phenomenon of "phenotypic convergence," in which distinct regulatory pathways can generate similar phenotypic outcomes (i.e., the acquisition of a specific neurotransmitter identity) in different neuron classes. We also identify cases of enhancer pleiotropy, in which the same cis-regulatory element is utilized to control gene expression in distinct neuron types. We engineered a cis-regulatory allele of the vesicular acetylcholine transporter, unc-17/VAChT, to assess the functional contribution of a "shadowed" enhancer. We observed a selective loss of unc-17/VAChT expression in one cholinergic pharyngeal pacemaker motor neuron class and a behavioral phenotype that matches microsurgical removal of this neuron. Our analysis illustrates the value of understanding cis-regulatory information to manipulate gene expression and control animal behavior.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Neuronas/metabolismo , Neurotransmisores/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Transporte Vesicular de Acetilcolina/genética , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Pleiotropía Genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Neuronas/clasificación , Neurotransmisores/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/genética , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo
6.
PLoS Biol ; 16(1): e2004218, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29293491

RESUMEN

One goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis, and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) G-protein-coupled receptor (GPCR) chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptor GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, coexpress several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as non-neuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Células Quimiorreceptoras/fisiología , Mapeo Cromosómico/métodos , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genes Reporteros , Fenotipo , Células Receptoras Sensoriales/fisiología , Transcriptoma/genética
7.
Elife ; 62017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28677525

RESUMEN

A core principle of nervous system organization is the diversification of neuron classes into subclasses that share large sets of features but differ in select traits. We describe here a molecular mechanism necessary for motor neurons to acquire subclass-specific traits in the nematode Caenorhabditis elegans. Cholinergic motor neuron classes of the ventral nerve cord can be subdivided into subclasses along the anterior-posterior (A-P) axis based on synaptic connectivity patterns and molecular features. The conserved COE-type terminal selector UNC-3 not only controls the expression of traits shared by all members of a neuron class, but is also required for subclass-specific traits expressed along the A-P axis. UNC-3, which is not regionally restricted, requires region-specific cofactors in the form of Hox proteins to co-activate subclass-specific effector genes in post-mitotic motor neurons. This intersectional gene regulatory principle for neuronal subclass diversification may be conserved from nematodes to mice.


Asunto(s)
Caenorhabditis elegans/embriología , Diferenciación Celular , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/fisiología , Animales , Variación Biológica Poblacional , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Homeodominio/metabolismo , Ratones , Factores de Transcripción/metabolismo
8.
EMBO J ; 34(20): 2574-89, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26341465

RESUMEN

Diversification of neuron classes is essential for functions of the olfactory system, but the underlying mechanisms that generate individual olfactory neuron types are only beginning to be understood. Here we describe a role of the highly conserved HMG-box transcription factor SOX-2 in postmitotic specification and alternative differentiation of the Caenorhabditis elegans AWC and AWB olfactory neurons. We show that SOX-2 partners with different transcription factors to diversify postmitotic olfactory cell types. SOX-2 functions cooperatively with the OTX/OTD transcription factor CEH-36 to specify an AWC "ground state," and functions with the LIM homeodomain factor LIM-4 to suppress this ground state and drive an AWB identity instead. Our findings provide novel insights into combinatorial codes that drive terminal differentiation programs in the nervous system and reveal a biological function of the deeply conserved Sox2 protein that goes beyond its well-known role in stem cell biology.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Diferenciación Celular/fisiología , Neuronas Receptoras Olfatorias/fisiología , Factores de Transcripción SOXB1/metabolismo , Animales , Secuencia de Bases , Células COS , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Mapeo Cromosómico , Ensayo de Cambio de Movilidad Electroforética , Genoma/genética , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Luciferasas , Datos de Secuencia Molecular , Neuronas Receptoras Olfatorias/citología , Plásmidos/genética , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo , Transfección
9.
Development ; 142(14): 2464-77, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26153233

RESUMEN

Neurogenesis involves deeply conserved patterning molecules, such as the proneural basic helix-loop-helix transcription factors. Sox proteins and specifically members of the SoxB and SoxC groups are another class of conserved transcription factors with an important role in neuronal fate commitment and differentiation in various species. In this study, we examine the expression of all five Sox genes of the nematode C. elegans and analyze the effect of null mutant alleles of all members of the SoxB and SoxC groups on nervous system development. Surprisingly, we find that, unlike in other systems, neither of the two C. elegans SoxB genes sox-2 (SoxB1) and sox-3 (SoxB2), nor the sole C. elegans SoxC gene sem-2, is broadly expressed throughout the embryonic or adult nervous system and that all three genes are mostly dispensable for embryonic neurogenesis. Instead, sox-2 is required to maintain the developmental potential of blast cells that are generated in the embryo but divide only postembryonically to give rise to differentiated neuronal cell types. Moreover, sox-2 and sox-3 have selective roles in the terminal differentiation of specific neuronal cell types. Our findings suggest that the common themes of SoxB gene function across phylogeny lie in specifying developmental potential and, later on, in selectively controlling terminal differentiation programs of specific neuron types, but not in broadly controlling neurogenesis.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/embriología , Neurogénesis/fisiología , Neuronas/citología , Factores de Transcripción SOXB1/fisiología , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Diferenciación Celular , Linaje de la Célula , Masculino , Neuronas Motoras/metabolismo , Mutación , Factores de Transcripción SOXC/fisiología , Transducción de Señal , Transgenes
10.
Nat Prod Commun ; 9(8): 1099-101, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25233582

RESUMEN

Increased behavioral sensitivity to the pheromone after brief exposure of the whole insect to the sex pheromone has been documented in antennal lobe neurons of Spodoptera littoralis. We investigated whether a brief stimulus of the major component of the pheromone on naïve antenna separated from the head increased the electroantennographic responses after successive stimulations at different times. The response increase was clear 30 min after the first stimulation, and this effect lasted at least 60 min, the average life time of the antenna. Our results suggest that the olfactory receptor neurons, and not only the neurons in the antennal lobe, may be involved in the increased antennal response after a single pheromone pulse.


Asunto(s)
Antenas de Artrópodos/efectos de los fármacos , Atractivos Sexuales/farmacología , Spodoptera/efectos de los fármacos , Animales , Antenas de Artrópodos/fisiología , Electrofisiología , Femenino , Masculino , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología , Spodoptera/fisiología
11.
Hum Mol Genet ; 21(9): 1989-2004, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22381526

RESUMEN

In Duchenne muscular dystrophy (DMD), a persistently altered and reorganizing extracellular matrix (ECM) within inflamed muscle promotes damage and dysfunction. However, the molecular determinants of the ECM that mediate inflammatory changes and faulty tissue reorganization remain poorly defined. Here, we show that fibrin deposition is a conspicuous consequence of muscle-vascular damage in dystrophic muscles of DMD patients and mdx mice and that elimination of fibrin(ogen) attenuated dystrophy progression in mdx mice. These benefits appear to be tied to: (i) a decrease in leukocyte integrin α(M)ß(2)-mediated proinflammatory programs, thereby attenuating counterproductive inflammation and muscle degeneration; and (ii) a release of satellite cells from persistent inhibitory signals, thereby promoting regeneration. Remarkably, Fib-gamma(390-396A) (Fibγ(390-396A)) mice expressing a mutant form of fibrinogen with normal clotting function, but lacking the α(M)ß(2) binding motif, ameliorated dystrophic pathology. Delivery of a fibrinogen/α(M)ß(2) blocking peptide was similarly beneficial. Conversely, intramuscular fibrinogen delivery sufficed to induce inflammation and degeneration in fibrinogen-null mice. Thus, local fibrin(ogen) deposition drives dystrophic muscle inflammation and dysfunction, and disruption of fibrin(ogen)-α(M)ß(2) interactions may provide a novel strategy for DMD treatment.


Asunto(s)
Fibrina/metabolismo , Antígeno de Macrófago-1/metabolismo , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Animales , Matriz Extracelular/metabolismo , Fibrinógeno/antagonistas & inhibidores , Fibrinógeno/genética , Fibrinógeno/metabolismo , Fibrinógeno/farmacología , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/terapia , Leucocitos/metabolismo , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Ratones Mutantes , Modelos Biológicos , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/fisiología
12.
J Cell Biol ; 196(1): 163-75, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22213800

RESUMEN

Disruption of skeletal muscle homeostasis by substitution with fibrotic tissue constitutes the principal cause of death in Duchenne muscular dystrophy (DMD) patients, yet the implicated fibrogenic mechanisms remain poorly understood. This study identifies the extracellular PAI-1/urokinase-type plasminogen activator (uPA) balance as an important regulator of microribonucleic acid (miR)-21 biogenesis, controlling age-associated muscle fibrosis and dystrophy progression. Genetic loss of PAI-1 in mdx dystrophic mice anticipated muscle fibrosis through these sequential mechanisms: the alteration of collagen metabolism by uPA-mediated proteolytic processing of transforming growth factor (TGF)-ß in muscle fibroblasts and the activation of miR-21 expression, which inhibited phosphatase and tensin homologue and enhanced AKT signaling, thus endowing TGF-ß with a remarkable cell proliferation-promoting potential. Age-associated fibrogenesis and muscle deterioration in mdx mice, as well as exacerbated dystrophy in young PAI-1(-/-) mdx mice, could be reversed by miR-21 or uPA-selective interference, whereas forced miR-21 overexpression aggravated disease severity. The PAI-1-miR-21 fibrogenic axis also appeared dysregulated in muscle of DMD patients, providing a basis for effectively targeting fibrosis and muscular dystrophies in currently untreatable individuals.


Asunto(s)
MicroARNs/fisiología , Distrofias Musculares/genética , Serpina E2/fisiología , Adolescente , Factores de Edad , Animales , Proliferación Celular , Niño , Colágeno/metabolismo , Femenino , Fibrosis/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serpina E2/genética , Serpina E2/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/fisiología
13.
Curr Top Dev Biol ; 96: 167-201, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21621071

RESUMEN

The repair of an injured tissue is a complex biological process involving the coordinated activities of tissue-resident and infiltrating cells in response to local and systemic signals. Following acute tissue injury, inflammatory cell infiltration and activation/proliferation of resident stem cells is the first line of defense to restore tissue homeostasis. However, in the setting of chronic tissue damage, such as in Duchenne Muscular Dystrophy, inflammatory infiltrates persist, the ability of stem cells (satellite cells) is blocked and fibrogenic cells are continuously activated, eventually leading to the conversion of muscle into nonfunctional fibrotic tissue. This review explores our current understanding of the cellular and molecular mechanisms underlying efficient muscle repair that are dysregulated in muscular dystrophy-associated fibrosis and in aging-related muscle dysfunction.


Asunto(s)
Músculo Esquelético/fisiología , Envejecimiento , Animales , Matriz Extracelular/metabolismo , Fibrosis/metabolismo , Humanos , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Regeneración
14.
Genes Dev ; 22(13): 1747-52, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18593877

RESUMEN

In the fatal degenerative Duchenne muscular dystrophy (DMD), skeletal muscle is progressively replaced by fibrotic tissue. Here, we show that fibrinogen accumulates in dystrophic muscles of DMD patients and mdx mice. Genetic loss or pharmacological depletion of fibrinogen in these mice reduced fibrosis and dystrophy progression. Our results demonstrate that fibrinogen-Mac-1 receptor binding, through induction of IL-1beta, drives the synthesis of transforming growth factor-beta (TGFbeta) by mdx macrophages, which in turn induces collagen production in mdx fibroblasts. Fibrinogen-produced TGFbeta further amplifies collagen accumulation through activation of profibrotic alternatively activated macrophages. Fibrinogen, by engaging its alphavbeta3 receptor on fibroblasts, also directly promotes collagen synthesis. These data unveil a profibrotic role of fibrinogen deposition in muscle dystrophy.


Asunto(s)
Fibrinógeno/fisiología , Activación de Macrófagos/fisiología , Distrofia Muscular de Duchenne/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Células Cultivadas , Niño , Preescolar , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Integrina alfaVbeta3/metabolismo , Interleucina-1beta/metabolismo , Antígeno de Macrófago-1/metabolismo , Macrófagos/fisiología , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/inmunología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/inmunología , Distrofia Muscular de Duchenne/patología , Unión Proteica
15.
J Cell Biol ; 178(6): 1039-51, 2007 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-17785520

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal and incurable muscle degenerative disorder. We identify a function of the protease urokinase plasminogen activator (uPA) in mdx mice, a mouse model of DMD. The expression of uPA is induced in mdx dystrophic muscle, and the genetic loss of uPA in mdx mice exacerbated muscle dystrophy and reduced muscular function. Bone marrow (BM) transplantation experiments revealed a critical function for BM-derived uPA in mdx muscle repair via three mechanisms: (1) by promoting the infiltration of BM-derived inflammatory cells; (2) by preventing the excessive deposition of fibrin; and (3) by promoting myoblast migration. Interestingly, genetic loss of the uPA receptor in mdx mice did not exacerbate muscular dystrophy in mdx mice, suggesting that uPA exerts its effects independently of its receptor. These findings underscore the importance of uPA in muscular dystrophy.


Asunto(s)
Distrofia Muscular de Duchenne/metabolismo , Mioblastos/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/deficiencia , Animales , Trasplante de Médula Ósea , Movimiento Celular , Células Cultivadas , Fibrina/metabolismo , Macrófagos/fisiología , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Mioblastos/patología , Receptores de Superficie Celular/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa
16.
Front Biosci ; 10: 2978-85, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15970552

RESUMEN

The plasminogen activation (PA) system is an extensively used mechanism for the generation of proteolytic activity in the extracellular matrix, where it contributes to tissue remodeling in a wide range of physiopathological processes. Despite the limited information available at present on plasminogen activators, their inhibitors and cognate receptors in skeletal muscle, increasing evidence is accumulating on their important roles in the homeostasis of muscle fibers and their surrounding extracellular matrix. The development of mice deficient for the individual components of the PA system has provided an incisive approach to test the proposed muscle functions in vivo. Skeletal muscle regeneration induced by injury has been analyzed in urokinase-type plasminogen activator (uPA)-, tissue-type plasminogen activator (tPA)-, plasminogen (Plg)- and plasminogen activator inhibitor-1 (PAI-1)-deficient mice and has demonstrated profound effects of these molecules on the fibrotic state and the inflammatory response, which contribute to muscle repair. In particular, the opposite roles of uPA and its inhibitor PAI-1 in this process are highlighted. Delineating the mechanisms by which the different plasminogen activation system components regulate tissue repair will be of potential therapeutic value for severe muscle disorders.


Asunto(s)
Sistema Musculoesquelético/metabolismo , Inhibidor 1 de Activador Plasminogénico/fisiología , Plasminógeno/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/fisiología , Animales , Ratones , Regeneración
17.
Thromb Haemost ; 93(3): 584-91, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15735814

RESUMEN

The alkylating agent MNNG is an environmental carcinogen that causes DNA lesions leading to cell death. We previously demonstrated that MNNG induced the transcriptional activity of the plasminogen activator inhibitor-1 (PAI-1) gene in a p53-dependent manner. However, the mechanism(s) linking external MNNG stimulation and PAI-1 gene induction remained to be elucidated. Here, we show that ATM and ATR kinases, but not DNA-PK, which participate in DNA damage-activated checkpoints, regulate the phosphorylation of p53 at serine 15 in response to MNNG cell treatment. Using ATM-deficient cells, ATM was shown to be required for early phosphorylation of serine 15 in response to MNNG, whereas catalytically inactive ATR selectively interfered with late phase serine 15 phosphorylation. In contrast, DNA-PK-deficient cells showed no change in the MNNG-induced serine 15 phosphorylation pattern. In agreement with this, sequential activation of ATM and ATR kinases was also required for adequate induction of the endogenous PAI-1 gene by MNNG. Finally, we showed that cells derived from PAI-1-deficient mice were more resistant to MNNG-induced cell death than normal cells, suggesting that p53-dependent PAI-1 expression partially mediated this effect. Since PAI-1 is involved in the control of tumor invasiveness, our finding that MNNG induces PAI-1 gene expression via ATM/ATR-mediated phosphorylation of p53 sheds new insight on the role of these DNA damage-induced cell cycle checkpoint kinases.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Metilnitronitrosoguanidina/farmacología , Inhibidor 1 de Activador Plasminogénico/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Activación Transcripcional , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Células 3T3 , Alquilantes/farmacología , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Cafeína/farmacología , Carcinógenos/farmacología , Muerte Celular , Proteína Quinasa Activada por ADN/deficiencia , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/deficiencia , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/deficiencia , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/deficiencia , Transfección , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/deficiencia
18.
Front Biosci ; 10: 30-6, 2005 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-15574344

RESUMEN

Plasmin is a potent extracellular protease specialized in the degradation of fibrin (fibrinolysis). Active plasmin is generated by proteolytic activation of the zymogen plasminogen (Plg) by urokinase-type plasminogen activator (uPA) and tissue-type plasminogen activator (tPA). Alpha-enolase, although traditionally considered a glycolytic enzyme, constitutes a receptor for plasminogen on several cell types, serving to localize and promote plasminogen activation pericellularly. Localization of plasmin activity on the cell surface plays a critical role in fibrinolysis and in physiopathological processes involving extracellular matrix remodelling. Previous studies have unambiguously demonstrated that uPA-dependent plasmin generation is necessary for myogenesis in vitro and for muscle regeneration in vivo. However, the implication of alpha-enolase plasminogen receptor in myogenesis had never been investigated. This review focuses on the recently reported expression and function of alpha-enolase plasminogen receptor during myogenesis. Skeletal myoblasts express alpha-enolase plasminogen receptor, being its expression greatly induced during the differentiation process in vitro. MAb 11G1, a monoclonal antibody against anti-alpha-enolase plasminogen receptor, that inhibits plasmin generation, was able to fully abrogate myoblast fusion and differentiation. Moreover, both plasmin activity and alpha-enolase plasminogen receptor expression were significantly augmented in injury-induced regenerating muscle of wild type mice and in the dystrophic muscle of mdx mice, an animal model of Duchenne muscular dystrophy (DMD). Altogether, these results indicate that the plasminogen activation (PA) system is an important component of skeletal myogenesis in vitro and in vivo. In particular, the expression of alpha-enolase plasminogen receptor may serve to concentrate and enhance plasmin generation on the cell surface of migratory myoblasts contributing to efficient muscle repair.


Asunto(s)
Biomarcadores de Tumor/fisiología , Proteínas de Unión al ADN/fisiología , Fosfopiruvato Hidratasa/fisiología , Activador de Tejido Plasminógeno/metabolismo , Proteínas Supresoras de Tumor/fisiología , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Animales , Anticuerpos Monoclonales/química , Modelos Animales de Enfermedad , Matriz Extracelular , Glucólisis , Humanos , Ratones , Ratones Endogámicos mdx , Desarrollo de Músculos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...