Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Psychiatry ; 14: 1104563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36846236

RESUMEN

Introduction: Chronic nicotine exposure induces changes in the expression of key regulatory genes associated with metabolic function and neuronal alterations in the brain. Many bioregulatory genes have been associated with exposure to nicotine, but the modulating effects of sex and diet on gene expression in nicotine-exposed brains have been largely unexplored. Both humans and rodents display motivation for nicotine use and the emergence of withdrawal symptoms during abstinence. Research comparing pre-clinical models with human subjects provides an important opportunity to understand common biomarkers of the harmful effects of nicotine as well as information that may help guide the development of more effective interventions for nicotine cessation. Methods: Human postmortem dorsolateral prefrontal cortex (dLPFC) tissue BA9 was collected from female and male subjects, smokers and non-smokers (N = 12 per group). Rat frontal lobes were collected from female and male rats that received a regular diet (RD) or a high-fat diet (HFD) (N = 12 per group) for 14 days following implantation of a osmotic mini-pump (Alzet) that delivered nicotine continuously. Controls (control-s) received a sham surgical procedure. RNA was extracted from tissue from human and rat samples and reversed-transcribed to cDNA. Gene expression of CHRNA10 (Cholinergic receptor nicotinic alpha 10), CERKL (Ceramide Kinase-Like), SMYD1 (SET and MYD Domin Containing 1), and FA2H (Fatty Acid 2-Hydrolase) in humans was compared to rats in each subset of groups and quantified by qPCR methods. Additionally, protein expression of FA2H was analyzed by immunohistochemistry (IHC) in human dLPFC. Results: Humans with a history of smoking displayed decreased CHRNA10 (p = 0.0005), CERKL (p ≤ 0.0001), and SMYD1 (p = 0.0005) expression and increased FA2H (p = 0.0097) expression compared to non-smokers (p < 0.05). Similar patterns of results were observed in nicotine exposed vs. control rats. Interestingly, sex-related differences in gene expression for CERKL and FA2H were observed. In addition, ANCOVA analysis showed a significant effect of nicotine in a sex-different manner, including an increase in CERKL in male and female rats with RD or HFD. In rats exposed to an HFD, FA2H gene expression was lower in nicotine-treated rats compared to RD rats treated with nicotine. Protein expression of FA2H (p = 0.001) by IHC was significantly higher in smokers compared to non-smokers. Conclusion: These results suggest that a history of long-term nicotine exposure in humans alters the expression of sphingolipid metabolism-related (CERKL, SMYD1, and FA2H) and neuronal (CHRNA10) marker genes similarly as compared to rats. Sex- and diet-dependent differences appear in nicotine-exposed rats, critical in regulating sphingolipid metabolism and nicotinic acetylcholine receptors. This research enhances the construct validity of rat models of nicotine usage by showing a similar pattern of changes in gene expression in human subjects with a smoking history.

2.
J Parkinsons Dis ; 10(1): 185-192, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31561385

RESUMEN

BACKGROUND: Parkinson's disease (PD) and multiple system atrophy (MSA) patients often suffer from gastrointestinal (GI) dysfunction and GI dysbiosis (microbial imbalance). GI dysfunction also occurs in mouse models of PD and MSA. OBJECTIVES: To assess gut dysfunction and dysbiosis in PD subjects as compared to controls, identify potential shared microbial taxa in humans and mouse models of PD and MSA, and to assess the effects of potential therapies on mouse GI microbiota. METHODS: In this human pilot study, GI function was assessed by fecal consistency/frequency measured using the Bristol Stool Form Scale and GI transit time assessed using Sitzmarks pills and abdominal radiology. Human and mouse microbiota were analyzed by extracting fecal genomic DNA followed by 16S rRNA sequencing. RESULTS: In our PD patients genera Akkermansia significantly increased while a trend toward increased Bifidobacterium and decreased Prevotella was observed. Families Bacteroidaceae and Lachnospiraceae and genera Prevotella and Bacteroides were detected in both humans and PD mice, suggesting potential shared biomarkers. In mice treated with the approved multiple sclerosis drug, FTY720, or with our FTY720-Mitoxy-derivative, we saw that FTY720 had little effect while FTY720-Mitoxy increased beneficial Ruminococcus and decreased Rickenellaceae family. CONCLUSION: Akkermansia and Prevotellaceae data reported by others were replicated in our human pilot study suggesting the use of those taxa as potential biomarkers for PD diagnosis. The effect of FTY720-Mitoxy on taxa Rikenellaceae and Ruminococcus and the relevance of S24-7 await further evaluation. It also remains to be determined if mouse microbiota have predictive power for human subjects.


Asunto(s)
Disbiosis/microbiología , Clorhidrato de Fingolimod/farmacología , Microbioma Gastrointestinal , Inmunosupresores/farmacología , Microbiota , Atrofia de Múltiples Sistemas/microbiología , Enfermedad de Parkinson/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Estreñimiento/fisiopatología , Modelos Animales de Enfermedad , Femenino , Clorhidrato de Fingolimod/administración & dosificación , Clorhidrato de Fingolimod/análogos & derivados , Microbioma Gastrointestinal/efectos de los fármacos , Motilidad Gastrointestinal/fisiología , Humanos , Inmunosupresores/administración & dosificación , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Proyectos Piloto , ARN Ribosómico 16S
3.
Exp Neurol ; 325: 113120, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31751571

RESUMEN

Multiple system atrophy (MSA) is a fatal disorder with no effective treatment. MSA pathology is characterized by α-synuclein (aSyn) accumulation in oligodendrocytes, the myelinating glial cells of the central nervous system (CNS). aSyn accumulation in oligodendrocytes forms the pathognomonic glial cytoplasmic inclusions (GCIs) of MSA. MSA aSyn pathology is also associated with motor and autonomic dysfunction, including an impaired ability to sweat. MSA patients have abnormal CNS expression of glial-cell-line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Our prior studies using the parent compound FTY720, a food and drug administration (FDA) approved immunosuppressive for multiple sclerosis, reveal that FTY720 protects parkinsonian mice by increasing BDNF. Our FTY720-derivative, FTY720-Mitoxy, is known to increase expression of oligodendrocyte BDNF, GDNF, and nerve growth factor (NGF) but does not reduce levels of circulating lymphocytes as it is not phosphorylated so cannot modulate sphingosine 1 phosphate receptors (S1PRs). To preclinically assess FTY720-Mitoxy for MSA, we used mice expressing human aSyn in oligodendrocytes under a 2,' 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter. CNP-aSyn transgenic (Tg) mice develop motor dysfunction between 7 and 9 mo, and progressive GCI pathology. Using liquid chromatography-mass spectrometry (LC-MS/MS) and enzymatic assays, we confirmed that FTY720-Mitoxy was stable and active. Vehicle or FTY720-Mitoxy (1.1 mg/kg/day) was delivered to wild type (WT) or Tg littermates from 8.5-11.5 mo by osmotic pump. We behaviorally assessed their movement by rotarod and sweat production by starch­iodine test. Postmortem tissues were evaluated by qPCR for BDNF, GDNF, NGF and GDNF-receptor RET mRNA and for aSyn, BDNF, GDNF, and Iba1 protein by immunoblot. MicroRNAs (miRNAs) were also assessed by qPCR. FTY720-Mitoxy normalized movement, sweat function and soleus muscle mass in 11.5 mo Tg MSA mice. FTY720-Mitoxy also increased levels of brain GDNF and reduced brain miR-96-5p, a miRNA that acts to decrease GDNF expression. Moreover, FTY720-Mitoxy blocked aSyn pathology measured by sequential protein extraction and immunoblot, and microglial activation assessed by immunohistochemistry and immunoblot. In the 3-nitropropionic acid (3NP) toxin model of MSA, FTY720-Mitoxy protected movement and mitochondria in WT and CNP-aSyn Tg littermates. Our data confirm potent in vivo protection by FTY720-Mitoxy, supporting its further evaluation as a potential therapy for MSA and related synucleinopathies.


Asunto(s)
Clorhidrato de Fingolimod/análogos & derivados , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Atrofia de Múltiples Sistemas/patología , Fármacos Neuroprotectores/farmacología , Animales , Conducta Animal/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Clorhidrato de Fingolimod/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/efectos de los fármacos , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Transgénicos , MicroARNs/efectos de los fármacos , MicroARNs/metabolismo , Atrofia de Múltiples Sistemas/metabolismo , Proteínas Proto-Oncogénicas c-ret/biosíntesis , Proteínas Proto-Oncogénicas c-ret/efectos de los fármacos , alfa-Sinucleína/genética
4.
Neuroscience ; 411: 1-10, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31129200

RESUMEN

Parkinson's disease (PD) is a progressive aging disorder that affects millions worldwide, thus, disease-modifying-therapies are urgently needed. PD pathology includes α-synuclein (aSyn) accumulation as synucleinopathy. Loss of GM1 gangliosides occurs in PD brain, which is modeled in GM2 synthase transgenic mice. GM2+/- mice have low, not absent GM1 and develop age-onset motor deficits, making them an excellent PD drug testing model. FTY720 (fingolimod) reduces synucleinopathy in A53T aSyn mice and motor dysfunction in 6-OHDA and rotenone PD models, but no one has tested FTY720 in mice that develop age-onset PD-like motor problems. We confirmed that GM2+/-mice had equivalent rotarod, hindlimb reflexes, and adhesive removal functions at 9 mo. From 11 mo, GM2+/- mice received oral FTY720 or vehicle 3x/week to 16 mo. As bladder problems occur in PD, we also assessed GM2+/- bladder function. This allowed us to demonstrate improved motor and bladder function in GM2+/- mice treated with FTY720. By immunoblot, FTY720 reduced levels of proNGF, a biomarker of bladder dysfunction. In humans with PD, arm swing becomes abnormal, and brachial plexus modulates arm swing. Ultrastructure of brachial plexus in wild type and GM2 transgenic mice confirmed abnormal myelination and axons in GM2 transgenics. FTY720 treated GM2+/- brachial plexus sustained myelin associated protein levels and reduced aggregated aSyn and PSer129 aSyn levels. FTY720 increases brain derived neurotrophic factor (BDNF) and we noted increased BDNF in GM2+/- brachial plexus and cerebellum, which contribute to rotarod performance. These findings provide further support for testing low dose FTY720 in patients with PD.


Asunto(s)
Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Clorhidrato de Fingolimod/farmacología , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Moduladores de los Receptores de fosfatos y esfingosina 1/farmacología , alfa-Sinucleína/metabolismo , Animales , Encéfalo/metabolismo , Clorhidrato de Fingolimod/uso terapéutico , Ratones , Ratones Transgénicos , Destreza Motora/efectos de los fármacos , N-Acetilgalactosaminiltransferasas/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Enfermedad de Parkinson Secundaria/metabolismo , Prueba de Desempeño de Rotación con Aceleración Constante , Moduladores de los Receptores de fosfatos y esfingosina 1/uso terapéutico
5.
Exp Neurol ; 311: 265-273, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30393144

RESUMEN

Parkinson's disease is a neurodegenerative disorder that reduces a patients' quality of life by the relentless progression of motor and non-motor symptoms. Among the non-motor symptoms is a condition called neurogenic bladder that is associated with detrusor muscle underactivity or overactivity occurring from neurologic damage. In Parkinson's disease, Lewy-body-like protein aggregation inside neurons typically contributes to pathology. This is associated with dopaminergic neuron loss in substantia nigra pars compacta (SNc) and in ventral tegmental area (VTA), both of which play a role in micturition. GM1 gangliosides are mature glycosphingolipids that enhance normal myelination and are reduced in Parkinson's brain. To explore the role of mature gangliosides in vivo, we obtained GM2 Synthase knockout (KO) mice, which develop parkinsonian pathology including a loss of SNc dopaminergic neurons, which we reconfirmed. However, bladder function and innervation have never been assessed in this model. We compared GM2 Synthase KO and wild type (WT) littermates' urination patterns from 9 to 19 months of age by counting small and large void spots produced during 1 h tests. Because male and female mice had different patterns, we evaluated data by sex and genotype. Small void spots were significantly increased in 12-16 month GM2 Synthase KO females, consistent with overactive bladder. Similarly, at 9-12 month GM2 KO males tended to have more small void spots than WT males. As GM2 Synthase KO mice aged, both females and males had fewer small and large void spots, consistent with detrusor muscle underactivity. Ultrasounds confirmed bladder enlargement in GM2 Synthase KO mice compared to WT mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed significant dopaminergic loss in GM2 Synthase KO VTA and SNc, and a trend toward TH loss in the GM2 KO periaqueductal gray (PAG) micturition centers. Levels of the nerve growth factor precursor, proNGF, were significantly increased in GM2 Synthase KO bladders and transmission electron micrographs showed atypical myelination of pelvic ganglion innervation in GM2 Synthase KO bladders. Cumulatively, our findings provide the first evidence that mature ganglioside loss affects micturition center TH neurons as well as proNGF dysregulation and abnormal innervation of the bladder. Thus, identifying therapies that will counteract these effects should be beneficial for those suffering from Parkinson's disease and related disorders.


Asunto(s)
Gangliósidos/deficiencia , N-Acetilgalactosaminiltransferasas/deficiencia , Trastornos Parkinsonianos/metabolismo , Vejiga Urinaria Neurogénica/metabolismo , Animales , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Femenino , Gangliósidos/genética , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , N-Acetilgalactosaminiltransferasas/genética , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/fisiopatología , Vejiga Urinaria Neurogénica/genética , Vejiga Urinaria Neurogénica/fisiopatología
6.
Front Mol Neurosci ; 11: 465, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622456

RESUMEN

Characterizing the normal function(s) of the protein α-Synuclein (aSyn) has the potential to illuminate links between Parkinson's disease (PD) and diabetes and also point the way toward new therapies for these disorders. Here we provide a perspective for consideration based on our discovery that aSyn normally acts to inhibit insulin secretion from pancreatic ß-cells by interacting with the Kir6.2 subunit of the ATP-sensitive potassium channel (K-ATP). It is also known that K-ATP channels act to inhibit brain dopamine secretion, and we have also shown that aSyn is a normal inhibitor of dopamine synthesis. The finding, that aSyn modulates Kir6.2 and other proteins involved in dopamine and insulin secretion, suggests that aSyn interacting proteins may be negatively impacted when aSyn aggregates inside cells, whether in brain or pancreas. Furthermore, identifying therapies for PD that can counteract dysfunction found in diabetes, would be highly beneficial. One such compound may be the multiple sclerosis drug, FTY720, which like aSyn can stimulate the activity of the catalytic subunit of protein phosphatase 2A (PP2Ac) as well as insulin secretion. In aging aSyn transgenic mice given long term oral FTY720, the mice had reduced aSyn pathology and increased levels of the protective molecule, brain derived neurotrophic factor (BDNF) (Vidal-Martinez et al., 2016). In collaboration with medicinal chemists, we made two non-immunosuppressive FTY720s that also enhance PP2Ac activity, and BDNF expression (Vargas-Medrano et al., 2014; Enoru et al., 2016; Segura-Ulate et al., 2017a). FTY720 and our novel FTY720-based-derivatives, may thus have therapeutic potential for both diabetes and PD.

7.
J Pharmacol Sci ; 133(3): 187-189, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28363412

RESUMEN

FTY720 is an immunosuppressive multiple sclerosis (MS) drug that stimulates the expression of neuroprotective brain-derived-neurotrophic-factor (BDNF). In vivo preclinical data suggest that FTY720 could be beneficial for treating Parkinson's patients, though its immunosuppressive effects might limit its efficacy. Two novel FTY720-derivatives, FTY720-C2 and FTY720-Mitoxy, also stimulate BDNF expression and enter brain like FTY720 but are not phosphorylated, suggesting they will not produce FTY720-like immunosuppression. Using FTY720 as a positive control, we measured low and high dose FTY720-derivatives, which did not stimulate FTY720-like lymphopenia or immunosuppressive signaling. These findings support the further preclinical assessment of the derivatives as potential novel Parkinson's therapies.


Asunto(s)
Linfocitos/efectos de los fármacos , Esfingosina/farmacología , Animales , Línea Celular Tumoral , Femenino , Recuento de Leucocitos , Linfopenia , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Fosforilación , Receptores de Lisoesfingolípidos/metabolismo , Esfingosina/análogos & derivados , Receptores de Esfingosina-1-Fosfato
8.
J Biol Chem ; 291(39): 20811-21, 2016 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-27528608

RESUMEN

Patients with Parkinson's disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS.


Asunto(s)
Envejecimiento/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Clorhidrato de Fingolimod/farmacología , Motilidad Gastrointestinal/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Precursores de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Envejecimiento/patología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Motilidad Gastrointestinal/genética , Humanos , Ratones , Ratones Transgénicos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Precursores de Proteínas/genética , alfa-Sinucleína/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...