Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Evol Biol ; 34(8): 1279-1289, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34107129

RESUMEN

A longstanding focus in evolutionary physiology concerns the causes and consequences of variation in maintenance metabolism. Insight into this can be gained by estimating the sex-specific genetic architecture of maintenance metabolism alongside other, potentially correlated traits on which selection may also act, such as body mass and locomotor activity. This may reveal potential genetic constraints affecting the evolution of maintenance metabolism. Here, we used a half-sibling breeding design to quantify the sex-specific patterns of genetic (co)variance in standard metabolic rate (SMR), body mass and daily locomotor activity in Drosophila melanogaster. There was detectable additive genetic variance for all traits in both sexes. As expected, SMR and body mass were strongly and positively correlated, with genetic allometry exponents (bA  ± SE) that were close to 2/3 in females (0.66 ± 0.16) and males (0.58 ± 0.32). There was a significant and positive genetic correlation between SMR and locomotor activity in males, suggesting that alleles that increase locomotion have pleiotropic effects on SMR. Sexual differences in the genetic architecture were largely driven by a difference in genetic variance in locomotor activity between the sexes. Overall, genetic variation was mostly shared between males and females, setting the stage for a potential intralocus sexual conflict in the face of sexually antagonistic selection.


Asunto(s)
Drosophila melanogaster , Selección Genética , Animales , Drosophila melanogaster/genética , Femenino , Locomoción , Masculino , Fenotipo , Caracteres Sexuales
2.
BMC Genomics ; 22(1): 204, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33757428

RESUMEN

BACKGROUND: Variation in locomotor capacity among animals often reflects adaptations to different environments. Despite evidence that physical performance is heritable, the molecular basis of locomotor performance and performance trade-offs remains poorly understood. In this study we identify the genes, signaling pathways, and regulatory processes possibly responsible for the trade-off between burst performance and endurance observed in Xenopus allofraseri, using a transcriptomic approach. RESULTS: We obtained a total of about 121 million paired-end reads from Illumina RNA sequencing and analyzed 218,541 transcripts obtained from a de novo assembly. We identified 109 transcripts with a significant differential expression between endurant and burst performant individuals (FDR ≤ 0.05 and logFC ≥2), and blast searches resulted in 103 protein-coding genes. We found major differences between endurant and burst-performant individuals in the expression of genes involved in the polymerization and ATPase activity of actin filaments, cellular trafficking, proteoglycans and extracellular proteins secreted, lipid metabolism, mitochondrial activity and regulators of signaling cascades. Remarkably, we revealed transcript isoforms of key genes with functions in metabolism, apoptosis, nuclear export and as a transcriptional corepressor, expressed in either burst-performant or endurant individuals. Lastly, we find two up-regulated transcripts in burst-performant individuals that correspond to the expression of myosin-binding protein C fast-type (mybpc2). This suggests the presence of mybpc2 homoeologs and may have been favored by selection to permit fast and powerful locomotion. CONCLUSION: These results suggest that the differential expression of genes belonging to the pathways of calcium signaling, endoplasmic reticulum stress responses and striated muscle contraction, in addition to the use of alternative splicing and effectors of cellular activity underlie locomotor performance trade-offs. Ultimately, our transcriptomic analysis offers new perspectives for future analyses of the role of single nucleotide variants, homoeology and alternative splicing in the evolution of locomotor performance trade-offs.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Anuros , Xenopus , Xenopus laevis
3.
Evolution ; 75(1): 130-140, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33196104

RESUMEN

Standard metabolic rate (SMR), defined as the minimal energy expenditure required for self-maintenance, is a key physiological trait. Few studies have estimated its relationship with fitness, most notably in insects. This is presumably due to the difficulty of measuring SMR in a large number of very small individuals. Using high-throughput flow-through respirometry and a Drosophila melanogaster laboratory population adapted to a life cycle that facilitates fitness measures, we quantified SMR, body mass, and fitness in 515 female and 522 male adults. We used a novel multivariate approach to estimate linear and nonlinear selection differentials and gradients from the variance-covariance matrix of fitness, SMR, and body mass, allowing traits specific covariates to be accommodated within a single model. In males, linear selection differentials for mass and SMR were positive and individually significant. Selection gradients were also positive but, despite substantial sample sizes, were nonsignificant due to increased uncertainty given strong SMR-mass collinearity. In females, only nonlinear selection was detected and it appeared to act primarily on body size, although the individual gradients were again nonsignificant. Selection did not differ significantly between sexes although differences in the fitness surfaces suggest sex-specific selection as an important topic for further study.


Asunto(s)
Metabolismo Basal/genética , Peso Corporal/genética , Drosophila melanogaster/genética , Selección Genética , Animales , Drosophila melanogaster/metabolismo , Femenino , Masculino
4.
Am Nat ; 194(6): E164-E176, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31738101

RESUMEN

A key endeavor in evolutionary physiology is to identify sources of among- and within-individual variation in resting metabolic rate (RMR). Although males and females often differ in whole-organism RMR due to sexual size dimorphism, sex differences in RMR sometimes persist after conditioning on body mass, suggesting phenotypic differences between males and females in energy-expensive activities contributing to RMR. One potential difference is locomotor activity, yet its relationship with RMR is unclear and different energy budget models predict different associations. We quantified locomotor activity (walking) over 24 h and RMR (overnight) in 232 male and 245 female Drosophila melanogaster that were either mated or maintained as virgins between two sets of measurements. Accounting for body mass, sex, and reproductive status, RMR and activity were significantly and moderately repeatable (RMR: R=0.33±0.06; activity: R=0.58±0.03). RMR and activity were positively correlated among (rind=0.26±0.09) but not within (re=0.05±0.06) individuals. Moreover, activity varied throughout the day and between the sexes. Partitioning our analysis by sex and activity by time of day revealed that all among-individual correlations were positive and significant in males but nonsignificant or even significantly negative in females. Such differences in the RMR-activity covariance suggest fundamental differences in how the sexes manage their energy budget.


Asunto(s)
Metabolismo Basal , Drosophila melanogaster/fisiología , Locomoción , Animales , Peso Corporal , Copulación , Drosophila melanogaster/metabolismo , Femenino , Masculino , Caracteres Sexuales
5.
Methods Mol Biol ; 1361: 289-307, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26483028

RESUMEN

Label-free bottom-up shotgun MS-based proteomics is an extremely powerful and simple tool to provide high quality quantitative analyses of the yeast proteome with only microgram amounts of total protein. Although the experimental design of this approach is rather straightforward and does not require the modification of growth conditions, proteins or peptides, several factors must be taken into account to benefit fully from the power of this method. Key factors include the choice of an appropriate method for the preparation of protein extracts, careful evaluation of the instrument design and available analytical capabilities, the choice of the quantification method (intensity-based vs. spectral count), and the proper manipulation of the selected quantification algorithm. The elaboration of this robust workflow for data acquisition, processing, and analysis provides unprecedented insight into the dynamics of the yeast proteome.


Asunto(s)
Proteoma/genética , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Regulación Fúngica de la Expresión Génica , Péptidos/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Coloración y Etiquetado
6.
J Exp Biol ; 218(Pt 11): 1733-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25908061

RESUMEN

The two sexes of a species often differ in many ways. How sexes differ depends on the selective context, with females often investing more in reproductive output and males in territory defense and resource acquisition. This also implies that behavioral strategies may differ between the two sexes, allowing them to optimize their fitness in a given ecological context. Here, we investigated whether males and females differ in their exploration behavior in an aquatic frog (Xenopus tropicalis). Moreover, we explored whether females show different behavioral strategies in the exploration of a novel environment as has been demonstrated previously for males of the same species. Our results show significant sex differences, with males exploring their environment more than females. Yet, similar to males, female exploratory behavior varied significantly among individuals and broadly fell into three categories: shy, intermediate and bold. Moreover, like in males, behavioral strategies are decoupled from morphology and performance. Our results suggest that females are more sedentary than males, with males engaging in greater risk taking by exploring novel environments more. Male and female behaviors could, however, be classified into similar groups, with some individuals being bolder than others and displaying more exploration behavior. The decoupling of morphology and performance from behavior appears to be a general feature in the species and may allow selection to act on both types of traits independently.


Asunto(s)
Conducta Exploratoria , Xenopus/fisiología , Animales , Conducta Apetitiva , Femenino , Locomoción , Masculino , Fenotipo , Factores Sexuales , Xenopus/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...