Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36835394

RESUMEN

DNA topoisomerases have an essential role in resolving topological problems that arise due to the double-helical structure of DNA. They can recognise DNA topology and catalyse diverse topological reactions by cutting and re-joining DNA ends. Type IA and IIA topoisomerases, which work by strand passage mechanisms, share catalytic domains for DNA binding and cleavage. Structural information has accumulated over the past decades, shedding light on the mechanisms of DNA cleavage and re-ligation. However, the structural rearrangements required for DNA-gate opening and strand transfer remain elusive, in particular for the type IA topoisomerases. In this review, we compare the structural similarities between the type IIA and type IA topoisomerases. The conformational changes that lead to the opening of the DNA-gate and strand passage, as well as allosteric regulation, are discussed, with a focus on the remaining questions about the mechanism of type IA topoisomerases.


Asunto(s)
ADN-Topoisomerasas , ADN , ADN-Topoisomerasas/metabolismo , ADN/química , Isomerasas/metabolismo , Dominio Catalítico , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo
2.
Science ; 369(6509): 1355-1359, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32820062

RESUMEN

Prokaryotic messenger RNAs (mRNAs) are translated as they are transcribed. The lead ribosome potentially contacts RNA polymerase (RNAP) and forms a supramolecular complex known as the expressome. The basis of expressome assembly and its consequences for transcription and translation are poorly understood. Here, we present a series of structures representing uncoupled, coupled, and collided expressome states determined by cryo-electron microscopy. A bridge between the ribosome and RNAP can be formed by the transcription factor NusG, which stabilizes an otherwise-variable interaction interface. Shortening of the intervening mRNA causes a substantial rearrangement that aligns the ribosome entrance channel to the RNAP exit channel. In this collided complex, NusG linkage is no longer possible. These structures reveal mechanisms of coordination between transcription and translation and provide a framework for future study.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Factores de Elongación de Péptidos/química , Biosíntesis de Proteínas , Factores de Transcripción/química , Transcripción Genética , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Conformación Proteica , ARN Mensajero/química , Subunidades Ribosómicas Grandes Bacterianas/química
3.
Biol Open ; 5(4): 519-28, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27029902

RESUMEN

In recent years, photosynthetic autotrophic cyanobacteria have attracted interest for biotechnological applications for sustainable production of valuable metabolites. Although biosafety issues can have a great impact on public acceptance of cyanobacterial biotechnology, biosafety of genetically modified cyanobacteria has remained largely unexplored. We set out to incorporate biocontainment systems in the model cyanobacteriumSynechocystissp. PCC 6803. Plasmid-encoded safeguards were constructed using the nonspecific nuclease NucA fromAnabaenacombined with different metal-ion inducible promoters. In this manner, conditional lethality was dependent on intracellular DNA degradation for regulated autokilling as well as preclusion of horizontal gene transfer. In cells carrying the suicide switch comprising thenucAgene fused to a variant of thecopMpromoter, efficient inducible autokilling was elicited. Parallel to nuclease-based safeguards, cyanobacterial toxin/antitoxin (TA) modules were examined in biosafety switches. Rewiring ofSynechocystisTA pairsssr1114/slr0664andslr6101/slr6100for conditional lethality using metal-ion responsive promoters resulted in reduced growth, rather than cell killing, suggesting cells could cope with elevated toxin levels. Overall, promoter properties and translation efficiency influenced the efficacy of biocontainment systems. Several metal-ion promoters were tested in the context of safeguards, and selected promoters, including anrsBvariant, were characterized by beta-galactosidase reporter assay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...