Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-37961288

RESUMEN

For antigenically variable pathogens such as influenza, strain fitness is partly determined by the relative availability of hosts susceptible to infection with that strain compared to others. Antibodies to the hemagglutinin (HA) and neuraminidase (NA) confer substantial protection against influenza infection. We asked if a cross-sectional antibody-derived estimate of population susceptibility to different clades of influenza A (H3N2) could predict the success of clades in the following season. We collected sera from 483 healthy individuals aged 1 to 90 years in the summer of 2017 and analyzed neutralizing responses to the HA and NA of representative strains. The clade to which neutralizing antibody titers were lowest, indicating greater population susceptibility, dominated the next season. Titers to different HA and NA clades varied dramatically between individuals but showed significant associations with age, suggesting dependence on correlated past exposures. Despite this correlation, inter-individual variability in antibody titers to H3N2 strains increased gradually with age. This study indicates how representative measures of population immunity might improve evolutionary forecasts and inform selective pressures on influenza.

2.
PLoS Pathog ; 19(8): e1011603, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624867

RESUMEN

Antibodies result from the competition of B cell lineages evolving under selection for improved antigen recognition, a process known as affinity maturation. High-affinity antibodies to pathogens such as HIV, influenza, and SARS-CoV-2 are frequently reported to arise from B cells whose receptors, the precursors to antibodies, are encoded by particular immunoglobulin alleles. This raises the possibility that the presence of particular germline alleles in the B cell repertoire is a major determinant of the quality of the antibody response. Alternatively, initial differences in germline alleles' propensities to form high-affinity receptors might be overcome by chance events during affinity maturation. We first investigate these scenarios in simulations: when germline-encoded fitness differences are large relative to the rate and effect size variation of somatic mutations, the same germline alleles persistently dominate the response of different individuals. In contrast, if germline-encoded advantages can be easily overcome by subsequent mutations, allele usage becomes increasingly divergent over time, a pattern we then observe in mice experimentally infected with influenza virus. We investigated whether affinity maturation might nonetheless strongly select for particular amino acid motifs across diverse genetic backgrounds, but we found no evidence of convergence to similar CDR3 sequences or amino acid substitutions. These results suggest that although germline-encoded specificities can lead to similar immune responses between individuals, diverse evolutionary routes to high affinity limit the genetic predictability of responses to infection and vaccination.


Asunto(s)
COVID-19 , Animales , Ratones , COVID-19/genética , SARS-CoV-2/genética , Anticuerpos , Alelos , Células Germinativas
3.
Nat Med ; 29(6): 1520-1529, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37322120

RESUMEN

Primary sclerosing cholangitis (PSC) is an immune-mediated disease of the bile ducts that co-occurs with inflammatory bowel disease (IBD) in almost 90% of cases. Colorectal cancer is a major complication of patients with PSC and IBD, and these patients are at a much greater risk compared to patients with IBD without concomitant PSC. Combining flow cytometry, bulk and single-cell transcriptomics, and T and B cell receptor repertoire analysis of right colon tissue from 65 patients with PSC, 108 patients with IBD and 48 healthy individuals we identified a unique adaptive inflammatory transcriptional signature associated with greater risk and shorter time to dysplasia in patients with PSC. This inflammatory signature is characterized by antigen-driven interleukin-17A (IL-17A)+ forkhead box P3 (FOXP3)+ CD4 T cells that express a pathogenic IL-17 signature, as well as an expansion of IgG-secreting plasma cells. These results suggest that the mechanisms that drive the emergence of dysplasia in PSC and IBD are distinct and provide molecular insights that could guide prevention of colorectal cancer in individuals with PSC.


Asunto(s)
Colangitis Esclerosante , Neoplasias Colorrectales , Enfermedades Inflamatorias del Intestino , Humanos , Colangitis Esclerosante/complicaciones , Colangitis Esclerosante/patología , Inflamación/complicaciones , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedades Inflamatorias del Intestino/patología , Neoplasias Colorrectales/patología
4.
Nat Commun ; 12(1): 4313, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262041

RESUMEN

How a history of influenza virus infections contributes to protection is not fully understood, but such protection might explain the contrasting age distributions of cases of the two lineages of influenza B, B/Victoria and B/Yamagata. Fitting a statistical model to those distributions using surveillance data from New Zealand, we found they could be explained by historical changes in lineage frequencies combined with cross-protection between strains of the same lineage. We found additional protection against B/Yamagata in people for whom it was their first influenza B infection, similar to the immune imprinting observed in influenza A. While the data were not informative about B/Victoria imprinting, B/Yamagata imprinting could explain the fewer B/Yamagata than B/Victoria cases in cohorts born in the 1990s and the bimodal age distribution of B/Yamagata cases. Longitudinal studies can test if these forms of protection inferred from historical data extend to more recent strains and other populations.


Asunto(s)
Virus de la Influenza B/inmunología , Gripe Humana/epidemiología , Gripe Humana/inmunología , Distribución por Edad , Protección Cruzada , Humanos , Memoria Inmunológica , Virus de la Influenza B/clasificación , Gripe Humana/virología , Modelos Estadísticos , Nueva Zelanda/epidemiología , Probabilidad
5.
Cell Host Microbe ; 25(3): 357-366.e6, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30795982

RESUMEN

Influenza is a leading cause of death in the elderly, and the vaccine protects only a fraction of this population. A key aspect of antibody-mediated anti-influenza virus immunity is adaptation to antigenically distinct epitopes on emerging strains. We examined factors contributing to reduced influenza vaccine efficacy in the elderly and uncovered a dramatic reduction in the accumulation of de novo immunoglobulin gene somatic mutations upon vaccination. This reduction is associated with a significant decrease in the capacity of antibodies to target the viral glycoprotein, hemagglutinin (HA), and critical protective epitopes surrounding the HA receptor-binding domain. Immune escape by antigenic drift, in which viruses generate mutations in key antigenic epitopes, becomes highly exaggerated. Because of this reduced adaptability, most B cells activated in the elderly cohort target highly conserved but less potent epitopes. Given these findings, vaccines driving immunoglobulin gene somatic hypermutation should be a priority to protect elderly individuals.


Asunto(s)
Linfocitos B/inmunología , Epítopos/inmunología , Inmunidad Humoral , Vacunas contra la Influenza/inmunología , Orthomyxoviridae/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Epítopos/genética , Voluntarios Sanos , Humanos , Vacunas contra la Influenza/administración & dosificación , Persona de Mediana Edad , Mutación , Orthomyxoviridae/genética , Adulto Joven
6.
J Clin Invest ; 129(1): 93-105, 2019 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-30457979

RESUMEN

Vaccines are among the most effective public health tools for combating certain infectious diseases such as influenza. The role of the humoral immune system in vaccine-induced protection is widely appreciated; however, our understanding of how antibody specificities relate to B cell function remains limited due to the complexity of polyclonal antibody responses. To address this, we developed the Spec-seq framework, which allows for simultaneous monoclonal antibody (mAb) characterization and transcriptional profiling from the same single cell. Here, we present the first application of the Spec-seq framework, which we applied to human plasmablasts after influenza vaccination in order to characterize transcriptional differences governed by B cell receptor (BCR) isotype and vaccine reactivity. Our analysis did not find evidence of long-term transcriptional specialization between plasmablasts of different isotypes. However, we did find enhanced transcriptional similarity between clonally related B cells, as well as distinct transcriptional signatures ascribed by BCR vaccine recognition. These data suggest IgG and IgA vaccine-positive plasmablasts are largely similar, whereas IgA vaccine-negative cells appear to be transcriptionally distinct from conventional, terminally differentiated, antigen-induced peripheral blood plasmablasts.


Asunto(s)
Vacunas contra la Influenza/inmunología , Células Plasmáticas/inmunología , Transcripción Genética/inmunología , Vacunación , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Vacunas contra la Influenza/administración & dosificación , Masculino , Células Plasmáticas/citología , Receptores de Antígenos de Linfocitos B/inmunología , Transcripción Genética/efectos de los fármacos
7.
PLoS One ; 13(9): e0203164, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30188923

RESUMEN

ß diversity of herbivorous insects in the tropics is usually very high, and there is often strong dissimilarity in herbivore species composition across different spatial scales and different abiotic gradients. Similarly, turnover is high for trophic interactions between herbivorous insects and their host plants. Two factors have been proposed to explain temporal or spatial differences in trophic interactions: changes in species composition and temporal changes in the behavior of shared species. The goal of this study was to evaluate determinants of high ß diversity of trophic interactions between lepidopteran caterpillars and their host plants across dry and rainy seasons and their transitions. Over the course of a year, interaction diversity data were collected from 275 temporary plots in Cerrado vegetation, comprising 257 species of caterpillars, 137 species of host plants and 503 different trophic interactions. All these diversity parameters varied across seasons. Species assemblages of caterpillars and plants were different among the four seasons, and there was a high turnover of interactions between the seasons. The high temporal ß diversity of trophic interactions was mostly due to interaction rewiring between co-occurring species, as opposed to changes in species composition over time.


Asunto(s)
Herbivoria/fisiología , Lepidópteros/fisiología , Lepidópteros/patogenicidad , Plantas/parasitología , Animales , Biodiversidad , Brasil , Ecosistema , Especificidad del Huésped/fisiología , Interacciones Huésped-Patógeno/fisiología , Lluvia , Estaciones del Año , Clima Tropical
8.
Mol Biol Evol ; 35(5): 1135-1146, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688540

RESUMEN

High-affinity antibodies arise within weeks of infection from the evolution of B-cell receptors under selection to improve antigen recognition. This rapid adaptation is enabled by the distribution of highly mutable "hotspot" motifs in B-cell receptor genes. High mutability in antigen-binding regions (complementarity determining regions [CDRs]) creates variation in binding affinity, whereas low mutability in structurally important regions (framework regions [FRs]) may reduce the frequency of destabilizing mutations. During the response, loss of mutational hotspots and changes in their distribution across CDRs and FRs are predicted to compromise the adaptability of B-cell receptors, yet the contributions of different mechanisms to gains and losses of hotspots remain unclear. We reconstructed changes in anti-HIV B-cell receptor sequences and show that mutability losses were ∼56% more frequent than gains in both CDRs and FRs, with the higher relative mutability of CDRs maintained throughout the response. At least 21% of the total mutability loss was caused by synonymous mutations. However, nonsynonymous substitutions caused most (79%) of the mutability loss in CDRs. Because CDRs also show strong positive selection, this result suggests that selection for mutations that increase binding affinity contributed to loss of mutability in antigen-binding regions. Although recurrent adaptation to evolving viruses could indirectly select for high mutation rates, we found no evidence of indirect selection to increase or retain hotspots. Our results suggest mutability losses are intrinsic to both the neutral and adaptive evolution of B-cell populations and might constrain their adaptation to rapidly evolving pathogens such as HIV and influenza.


Asunto(s)
Evolución Molecular , VIH/inmunología , Receptores de Antígenos de Linfocitos B/genética , Selección Genética , Mutación Silenciosa , Sustitución de Aminoácidos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...