Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(24)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38132146

RESUMEN

There is growing evidence supporting the role of fibroblasts in all stages of atherosclerosis, from the initial phase to fibrous cap and plaque formation. In the arterial wall, as with macrophages and vascular smooth muscle cells, fibroblasts are exposed to a myriad of LDL lipids, including the lipid species formed during the oxidation of their polyunsaturated fatty acids of cholesteryl esters (PUFA-CEs). Recently, our group identified the final oxidation products of the PUFA-CEs, cholesteryl hemiesters (ChE), in tissues from cardiovascular disease patients. Cholesteryl hemiazelate (ChA), the most prevalent lipid of this family, is sufficient to impact lysosome function in macrophages and vascular smooth muscle cells, with consequences for their homeostasis. Here, we show that the lysosomal compartment of ChA-treated fibroblasts also becomes dysfunctional. Indeed, fibroblasts exposed to ChA exhibited a perinuclear accumulation of enlarged lysosomes full of neutral lipids. However, this outcome did not trigger de novo lysosome biogenesis, and only the lysosomal transcription factor E3 (TFE3) was slightly transcriptionally upregulated. As a consequence, autophagy was inhibited, probably via mTORC1 activation, culminating in fibroblasts' apoptosis. Our findings suggest that the impairment of lysosome function and autophagy and the induction of apoptosis in fibroblasts may represent an additional mechanism by which ChA can contribute to the progression of atherosclerosis.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Ratones , Animales , Ésteres del Colesterol , Lisosomas/fisiología , Ácidos Grasos , Fibroblastos
2.
J Lipid Res ; 64(9): 100419, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37482218

RESUMEN

Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1ß and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties.


Asunto(s)
Aterosclerosis , Pez Cebra , Animales , Humanos , Ésteres del Colesterol , Monocitos , Inflamación , Ésteres
3.
Traffic ; 24(7): 284-307, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37129279

RESUMEN

A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.


Asunto(s)
Aterosclerosis , Ésteres del Colesterol , Humanos , Ésteres del Colesterol/metabolismo , Macrófagos/metabolismo , Lisosomas/metabolismo , Aterosclerosis/metabolismo , Exocitosis
4.
Cells ; 11(19)2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36230978

RESUMEN

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3' untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand-receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.


Asunto(s)
Factor de Crecimiento Epidérmico , Distrofia Miotónica , Regiones no Traducidas 3' , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/farmacología , Receptores ErbB/metabolismo , Humanos , Ligandos , Distrofia Miotónica/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
Traffic ; 23(5): 238-269, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35343629

RESUMEN

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.


Asunto(s)
Lisosomas , Redes y Vías Metabólicas , Lisosomas/metabolismo , Transducción de Señal
6.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34528688

RESUMEN

In atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial. We identify cholesteryl hemiazelate (ChA), a stable oxidation end-product of cholesteryl-polyunsaturated fatty acid esters, as an inducer of lysosome malfunction in VSMCs. ChA-treated VSMCs acquire a foam-cell-like phenotype, characterized by enlarged lysosomes full of ChA and neutral lipids. The lysosomes are perinuclear and exhibit degradative capacity and cargo exit defects. Lysosome luminal pH is also altered. Even though the transcriptional response machinery and autophagy are not activated by ChA, the addition of recombinant lysosomal acid lipase (LAL) is able to rescue lysosome dysfunction. ChA significantly affects VSMC proliferation and migration, impacting atherosclerosis. In summary, this work shows that ChA is sufficient to induce lysosomal dysfunction in VSMCs, that, in ChA-treated VSMCs, neither lysosome biogenesis nor autophagy are triggered, and, finally, that recombinant LAL can be a therapeutic approach for lysosomal dysfunction.


Asunto(s)
Músculo Liso Vascular , Miocitos del Músculo Liso , Proliferación Celular , Células Cultivadas , Células Espumosas , Homeostasis , Lisosomas
7.
EBioMedicine ; 70: 103504, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34311325

RESUMEN

BACKGROUND: Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared. METHODS: Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls. Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other and from the controls. FINDINGS: Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control - Sensitivity: 1, Specificity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specificity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls, and partially separated CVD severities, as classified into five clinical groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment. INTERPRETATION: Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. FUNDING: Full list of funding sources at the end of the manuscript.


Asunto(s)
Aterosclerosis/sangre , Accidente Cerebrovascular Isquémico/sangre , Lipidómica/métodos , Lípidos/sangre , Lupus Eritematoso Sistémico/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Humanos , Masculino , Espectrometría de Masas/métodos , Persona de Mediana Edad
8.
Front Cell Dev Biol ; 9: 674749, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150769

RESUMEN

Inflammatory bowel diseases (IBD) with chronic infiltration of immune cells in the gastrointestinal tract are common and largely incurable. The therapeutic targeting of IBD has been hampered by the complex causality of the disease, with environmental insults like cholesterol-enriched Western diets playing a critical role. To address this drug development challenge, we report an easy-to-handle dietary cholesterol-based in vivo assay that allows the screening of immune-modulatory therapeutics in transgenic zebrafish models. An improvement in the feeding strategy with high cholesterol diet (HCD) selectively induces a robust and consistent infiltration of myeloid cells in larvae intestines that is highly suitable for compound discovery efforts. Using transgenics with fluorescent reporter expression in neutrophils, we take advantage of the unique zebrafish larvae clarity to monitor an acute inflammatory response in a whole organism context with a fully functional innate immune system. The use of semi-automated image acquisition and processing combined with quantitative image analysis allows categorizing anti- or pro-inflammatory compounds based on a leukocytic inflammation index. Our HCD gut inflammation (HCD-GI) assay is simple, cost- and time-effective as well as highly physiological which makes it unique when compared to chemical-based zebrafish models of IBD. Besides, diet is a highly controlled, selective and targeted trigger of intestinal inflammation that avoids extra-intestinal outcomes and reduces the chances of chemical-induced toxicity during screenings. We show the validity of this assay for a screening platform by testing two dietary phenolic acids, namely gallic acid (GA; 3,4,5-trihydroxybenzoic acid) and ferulic acid (FA; 4-hydroxy-3-methoxycinnamic acid), with well described anti-inflammatory actions in animal models of IBD. Analysis of common IBD therapeutics (Prednisolone and Mesalamine) proved the fidelity of our IBD-like intestinal inflammation model. In conclusion, the HCD-GI assay can facilitate and accelerate drug discovery efforts on IBD, by identification of novel lead molecules with immune modulatory action on intestinal neutrophilic inflammation. This will serve as a jumping-off point for more profound analyses of drug mechanisms and pathways involved in early IBD immune responses.

9.
Front Cell Dev Biol ; 9: 658995, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33855029

RESUMEN

Atherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner. Dysfunction of these organelles and consequent inefficient degradation of modified low-density lipoproteins (LDL) and apoptotic cells in atherosclerotic lesions have, therefore, numerous deleterious consequences for cellular homeostasis and disease progression. Lysosome dysfunction has been mostly studied in the context of the inherited lysosomal storage disorders (LSDs). However, over the last years it has become increasingly evident that the consequences of this phenomenon are more far-reaching, also influencing the progression of multiple acquired human pathologies, such as neurodegenerative diseases, cancer, and cardiovascular diseases (CVDs). During the formation of atherosclerotic plaques, the lysosomal compartment of the various cells constituting the arterial wall is under severe stress, due to the tremendous amounts of lipoproteins being processed by these cells. The uncontrolled uptake of modified lipoproteins by arterial phagocytic cells, namely macrophages and vascular smooth muscle cells (VSMCs), is the initial step that triggers the pathogenic cascade culminating in the formation of atheroma. These cells become pathogenic "foam cells," which are characterized by dysfunctional lipid-laden lysosomes. Here, we summarize the current knowledge regarding the origin and impact of the malfunctioning of the lysosomal compartment in plaque cells. We further analyze how the field of LSD research may contribute with some insights to the study of CVDs, particularly how therapeutic approaches that target the lysosomes in LSDs could be applied to hamper atherosclerosis progression and associated mortality.

10.
J Cell Physiol ; 236(8): 6011-6024, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33469937

RESUMEN

Alkaptonuria (AKU) is an ultra-rare disease caused by the deficient activity of homogentisate 1,2-dioxygenase enzyme, leading the accumulation of homogentisic acid (HGA) in connective tissues implicating the formation of a black pigmentation called "ochronosis." Although AKU is a multisystemic disease, the most affected tissue is the articular cartilage, which during the pathology appears to be highly damaged. In this study, a model of alkaptonuric chondrocytes and cartilage was realized to investigate the role of HGA in the alteration of the extracellular matrix (ECM). The AKU tissues lost its architecture composed of collagen, proteoglycans, and all the proteins that characterize the ECM. The cause of this alteration in AKU cartilage is attributed to a degeneration of the cytoskeletal network in chondrocytes caused by the accumulation of HGA. The three cytoskeletal proteins, actin, vimentin, and tubulin, were analyzed and a modification in their amount and disposition in AKU chondrocytes model was identified. Cytoskeleton is involved in many fundamental cellular processes; therefore, the aberration in this complex network is involved in the manifestation of AKU disease.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Ácido Homogentísico/farmacología , Actinas/efectos de los fármacos , Actinas/metabolismo , Alcaptonuria/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Ocronosis/tratamiento farmacológico , Vimentina/efectos de los fármacos , Vimentina/metabolismo
11.
Cells ; 9(10)2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32977446

RESUMEN

Atherosclerosis is an age-related disorder associated with long-term exposure to cardiovascular risk factors. The asymptomatic progression of atherosclerotic plaques leads to major cardiovascular diseases (CVD), including acute myocardial infarctions or cerebral ischemic strokes in some cases. Senescence, a biological process associated with progressive structural and functional deterioration of cells, tissues and organs, is intricately linked to age-related diseases. Cell senescence involves coordinated modifications in cellular compartments and has been demonstrated to contribute to different stages of atheroma development. Senescence-based therapeutic strategies are currently being pursued to treat and prevent CVD in humans in the near-future. In addition, distinct experimental settings allowed researchers to unravel potential approaches to regulate anti-apoptotic pathways, facilitate excessive senescent cell clearance and eventually reverse atherogenesis to improve cardiovascular function. However, a deeper knowledge is required to fully understand cellular senescence, to clarify senescence and atherogenesis intertwining, allowing researchers to establish more effective treatments and to reduce the cardiovascular disorders' burden. Here, we present an objective review of the key senescence-related alterations of the major intracellular organelles and analyze the role of relevant cell types for senescence and atherogenesis. In this context, we provide an updated analysis of therapeutic approaches, including clinically relevant experiments using senolytic drugs to counteract atherosclerosis.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Aterosclerosis/fisiopatología , Senescencia Celular/efectos de los fármacos , Orgánulos/metabolismo , Envejecimiento , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/terapia , Diferenciación Celular/fisiología , Senescencia Celular/fisiología , Humanos , Orgánulos/efectos de los fármacos
12.
Sci Rep ; 8(1): 14764, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30282999

RESUMEN

Shotgun lipidomic analysis of 203 lipids in 13 lipid classes performed on blood plasma of donors who had just suffered an acute coronary syndrome (ACS, n = 74), or an ischemic stroke (IS, n = 21), or who suffer from stable angina pectoris (SAP, n = 78), and an age-matched control cohort (n = 52), showed some of the highest inter-lipid class correlations between cholesteryl esters (CE) and phosphatidylcholines (PC) sharing a common fatty acid. The concentration of lysophospatidylcholine (LPC) and ratios of concentrations of CE to free cholesterol (Chol) were also lower in the CVD cohorts than in the control cohort, indicating a deficient conversion of Chol to CE in the blood plasma in the CVD subjects. A non-equilibrium reaction quotient, Q', describing the global homeostasis of cholesterol as manifested in the blood plasma was shown to have a value in the CVD cohorts (Q'ACS = 0.217 ± 0.084; Q'IS = 0.201 ± 0.084; Q'SAP = 0.220 ± 0.071) that was about one third less than in the control cohort (Q'Control = 0.320 ± 0.095, p < 1 × 10-4), suggesting its potential use as a rapid predictive/diagnostic measure of CVD-related irregularities in cholesterol homeostasis.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Ésteres del Colesterol/sangre , Colesterol/sangre , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/patología , Colesterol/genética , Ésteres del Colesterol/genética , Ácidos Grasos/sangre , Ácidos Grasos/genética , Femenino , Homeostasis/genética , Humanos , Masculino , Persona de Mediana Edad , Fosfatidilcolinas/sangre , Fosfatidilcolinas/genética
13.
Front Physiol ; 9: 654, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29997514

RESUMEN

Atherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes. The extent of lipid loading in macrophages influences their phenotype and consequently their inflammatory status. In response to excess atherogenic ligands, many normal cell processes become aberrant following a loss of homeostasis. This can have a direct impact upon the inflammatory response, and conversely inflammation can lead to cell dysfunction. Clear evidence for this exists in the lysosomes, endoplasmic reticulum and mitochondria of atherosclerotic macrophages, the principal lesional cell type. Furthermore, several intrinsic cell processes become dysregulated under lipidotic conditions. Therapeutic strategies aimed at restoring cell function under disease conditions are an ongoing coveted aim. Macrophages play a central role in promoting lesional inflammation, with plaque progression and stability being directly proportional to macrophage abundance. Understanding how mixtures or individual lipid species regulate macrophage biology is therefore a major area of atherosclerosis research. In this review, we will discuss how the myriad of lipid and lipoprotein classes and products used to model atherogenic, proinflammatory immune responses has facilitated a greater understanding of some of the intricacies of chronic inflammation and cell function. Despite this, lipid oxidation produces a complex mixture of products and with no single or standard method of derivatization, there exists some variation in the reported effects of certain oxidized lipids. Likewise, differences in the methods used to generate macrophages in vitro may also lead to variable responses when apparently identical lipid ligands are used. Consequently, the complexity of reported macrophage phenotypes has implications for our understanding of the metabolic pathways, processes and shifts underpinning their activation and inflammatory status. Using oxidized low density lipoproteins and its oxidized cholesteryl esters and phospholipid constituents to stimulate macrophage has been hugely valuable, however there is now an argument that only working with low complexity lipid species can deliver the most useful information to guide therapies aimed at controlling atherosclerosis and cardiovascular complications.

14.
Small GTPases ; 9(4): 349-351, 2018 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27687479

RESUMEN

Disruption of the cell plasma membrane can occur due to mechanical damage, pore forming toxins, etc. Resealing or plasma membrane repair (PMR) is the emergency response required for cell survival. It is triggered by Ca2+ entering through the disruption, causing organelles such as lysosomes located underneath the plasma membrane to fuse rapidly with the adjacent plasma membrane. We have recently identified some of the molecular traffic machinery that is involved in this vital process. Specifically, we showed that 2 members of the Rab family of small GTPases, Rab3a and Rab10, are essential for lysosome exocytosis and PMR in cells challenged with a bacterial toxin, streptolysin-O (SLO). Additionally, we showed that Rab3a regulates PMR via the interaction with 2 effectors, synaptotagmin-like protein 4a (Slp4-a) and nonmuscle myosin heavy chain IIA (NMHC IIA), the latter being identified for the first time as a Rab3a effector. This tripartite complex is essential for the positioning of the peripheral lysosomes responsible for PMR. In cells lacking any of the components of this tripartite complex, lysosomes were concentrated in the perinuclear region and absent in the periphery culminating with PMR inhibition.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis , Lisosomas/metabolismo , Proteína de Unión al GTP rab3A/metabolismo , Animales , Humanos
15.
FEBS Open Bio ; 7(9): 1281-1290, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28904858

RESUMEN

Erythrophagocytosis is a physiological process that aims to remove damaged red blood cells from the circulation in order to avoid hemolysis and uncontrolled liberation of iron. Many efforts have been made to understand heme trafficking inside macrophages, but little is known about the maturation of phagosomes containing different types of erythrophagocytic particles with different signals at their surfaces. Therefore, we performed a comparative study on the maturation of phagosomes containing three different models of red blood cells (RBC): aged/senescent, complement-opsonized, and IgG-opsonized. We also used two types of professional phagocytes: bone marrow-derived and peritoneal macrophages. By comparing markers from different stages of phagosomal maturation, we found that phagosomes carrying aged RBC reach lysosomes with a delay compared to those containing IgG- or complement-opsonized RBC, in both types of macrophages. These findings contribute to understanding the importance of the different signals at the RBC surface in phagolysosome biogenesis, as well as in the dynamics of RBC removal.

16.
Sci Rep ; 7(1): 5812, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724916

RESUMEN

Erythrophagocytosis, the phagocytic removal of damaged red blood cells (RBC), and subsequent phagolysosome biogenesis are important processes in iron/heme metabolism and homeostasis. Phagolysosome biogenesis implies the interaction of nascent phagosomes with endocytic compartments and also autophagy effectors. Here, we report that besides recruitment of microtubule-associated protein-1-light chain 3 (LC3), additional autophagy machinery such as sequestosome 1 (p62) is also acquired by single-membrane phagosomes at very early stages of the phagocytic process and that its acquisition is very important to the outcome of the process. In bone marrow-derived macrophages (BMDM) silenced for p62, RBC degradation is inhibited. P62, is also required for nuclear translocation and activation of the transcription factor Nuclear factor E2-related Factor 2 (NRF2) during erythrophagocytosis. Deletion of the Nrf2 allele reduces p62 expression and compromises RBC degradation. In conclusion, we reveal that erythrophagocytosis relies on an interplay between p62 and NRF2, potentially acting as protective mechanism to maintain reactive oxygen species at basal levels and preserve macrophage homeostasis.


Asunto(s)
Eritrocitos/citología , Eritrocitos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fagocitosis , Proteína Sequestosoma-1/metabolismo , Transducción de Señal , Animales , Autofagia , Línea Celular , Regulación de la Expresión Génica , Humanos , Espacio Intracelular/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos , Fagosomas/metabolismo , Fosforilación , Conejos , Ubiquitina/metabolismo
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 210-220, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27793708

RESUMEN

RATIONALE: Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages. These features, coupled to others such as inflammation, are typically seen in atherosclerosis. OBJECTIVE: To obtain insights into the mechanism of cholesteryl hemiester-induced pathological changes in lysosome function and induction of inflammation in vitro and assess their impact in vivo. METHODS AND RESULTS: We have examined the effects of ChS on macrophages (murine cell lines and primary cultures) in detail. Specifically, lysosomal morphology, pH, and proteolytic capacity were examined. Exposure of macrophages to sub-toxic ChS concentrations caused enlargement of the lysosomes, changes in their luminal pH, and accumulation of cargo in them. In primary mouse bone marrow-derived macrophages (BMDM), ChS-exposure increased the secretion of IL-1ß, TNF-α and IL-6. In zebrafish larvae (wild-type AB and PU.1:EGFP), fed with a ChS-enriched diet, we observed lipid accumulation, myeloid cell-infiltration in their vasculature and decrease in larval survival. Under the same conditions the effects of ChS were more profound than the effects of free cholesterol (FC). CONCLUSIONS: Our data strongly suggest that cholesteryl hemiesters are pro-atherogenic lipids able to mimic features of Ox-LDL both in vitro and in vivo.


Asunto(s)
Colesterol/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lisosomas/metabolismo , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Aterosclerosis/metabolismo , Línea Celular , Ésteres del Colesterol/metabolismo , Ésteres/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Larva/metabolismo , Lipidosis/metabolismo , Ratones , Células RAW 264.7 , Pez Cebra
18.
J Cell Biol ; 213(6): 631-40, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27325790

RESUMEN

Lysosome exocytosis plays a major role in resealing plasma membrane (PM) disruptions. This process involves two sequential steps. First, lysosomes are recruited to the periphery of the cell and then fuse with the damaged PM. However, the trafficking molecular machinery involved in lysosome exocytosis and PM repair (PMR) is poorly understood. We performed a systematic screen of the human Rab family to identify Rabs required for lysosome exocytosis and PMR. Rab3a, which partially localizes to peripheral lysosomes, was one of the most robust hits. Silencing of Rab3a or its effector, synaptotagmin-like protein 4a (Slp4-a), leads to the collapse of lysosomes to the perinuclear region and inhibition of PMR. Importantly, we have also identified a new Rab3 effector, nonmuscle myosin heavy chain IIA, as part of the complex formed by Rab3a and Slp4-a that is responsible for lysosome positioning at the cell periphery and lysosome exocytosis.


Asunto(s)
Membrana Celular/metabolismo , Membrana Celular/fisiología , Lisosomas/metabolismo , Lisosomas/fisiología , Proteína de Unión al GTP rab3A/metabolismo , Línea Celular , Línea Celular Tumoral , Exocitosis/fisiología , Células HEK293 , Células HeLa , Humanos , Leucocitos Mononucleares , Cadenas Pesadas de Miosina/metabolismo , Proteínas de Transporte Vesicular/metabolismo
19.
Antimicrob Agents Chemother ; 60(6): 3323-32, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26976875

RESUMEN

Quaternary ammonium compounds (QAC) are widely used, cheap, and chemically stable disinfectants and topical antiseptics with wide-spectrum antimicrobial activities. Within this group of compounds, we recently showed that there are significant differences between the pharmacodynamics of n-alkyl quaternary ammonium surfactants (QAS) with a short (C12) alkyl chain when in vitro toxicities toward bacterial and mammalian epithelial cells are compared. These differences result in an attractive therapeutic window that justifies studying short-chain QAS as prophylactics for sexually transmitted infections (STI) and perinatal vertically transmitted urogenital infections (UGI). We have evaluated the antimicrobial activities of short-chain (C12) n-alkyl QAS against several STI and UGI pathogens as well as against commensal Lactobacillus species. Inhibition of infection of HeLa cells by Neisseria gonorrhoeae and Chlamydia trachomatis was studied at concentrations that were not toxic to the HeLa cells. We show that the pathogenic bacteria are much more susceptible to QAS toxic effects than the commensal vaginal flora and that QAS significantly attenuate the infectivity of N. gonorrhoeae and C. trachomatis without affecting the viability of epithelial cells of the vaginal mucosa. N-Dodecylpyridinium bromide (C12PB) was found to be the most effective QAS. Our results strongly suggest that short-chain (C12) n-alkyl pyridinium bromides and structurally similar compounds are promising microbicide candidates for topical application in the prophylaxis of STI and perinatal vertical transmission of UGI.


Asunto(s)
Antiinfecciosos/farmacología , Chlamydia trachomatis/efectos de los fármacos , Gonorrea/tratamiento farmacológico , Compuestos de Amonio Cuaternario/farmacología , Streptococcus/efectos de los fármacos , Tensoactivos/farmacología , Células HeLa , Humanos , Transmisión Vertical de Enfermedad Infecciosa/prevención & control , Neisseria gonorrhoeae/efectos de los fármacos , Enfermedades de Transmisión Sexual/microbiología
20.
J Antimicrob Chemother ; 71(3): 641-54, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26679255

RESUMEN

OBJECTIVES: Broad-spectrum antimicrobial activity of quaternary ammonium surfactants (QAS) makes them attractive and cheap topical prophylactic options for sexually transmitted infections and perinatal vertically transmitted urogenital infections. Although attributed to their high affinity for biological membranes, the mechanisms behind QAS microbicidal activity are not fully understood. We evaluated how QAS structure affects antimicrobial activity and whether this can be exploited for use in prophylaxis of bacterial infections. METHODS: Acute toxicity of QAS to in vitro models of human epithelial cells and bacteria were compared to identify selective and potent bactericidal agents. Bacterial cell viability, membrane integrity, cell cycle and metabolism were evaluated to establish the mechanisms involved in selective toxicity of QAS. RESULTS: QAS toxicity normalized relative to surfactant critical micelle concentration showed n-dodecylpyridinium bromide (C12PB) to be the most effective, with a therapeutic index of ∼10 for an MDR strain of Escherichia coli and >20 for Neisseria gonorrhoeae after 1 h of exposure. Three modes of QAS antibacterial action were identified: impairment of bacterial energetics and cell division at low concentrations; membrane permeabilization and electron transport inhibition at intermediate doses; and disruption of bacterial membranes and cell lysis at concentrations close to the critical micelle concentration. In contrast, toxicity to mammalian cells occurs at higher concentrations and, as we previously reported, results primarily from mitochondrial dysfunction and apoptotic cell death. CONCLUSIONS: Our data show that short chain (C12) n-alkyl pyridinium bromides have a sufficiently large therapeutic window to be good microbicide candidates.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Tensoactivos/química , Tensoactivos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos Locales/química , Antiinfecciosos Locales/farmacología , Antiinfecciosos Locales/uso terapéutico , División Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Humanos , Metabolismo/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Neisseria gonorrhoeae/efectos de los fármacos , Neisseria gonorrhoeae/fisiología , Compuestos de Amonio Cuaternario/uso terapéutico , Tensoactivos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...