Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
1.
Oecologia ; 199(1): 205-215, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35526202

RESUMEN

Environmental heterogeneity is a key component in explaining the megadiversity of tropical forests. Despite its importance, knowledge about local drivers of environmental heterogeneity remains a challenge for ecologists. In Neotropical forests, epiphytic tank bromeliads store large amounts of water and nutrients in the tree canopy, and their tank overflow may create nutrient-rich patches in the soil. However, the effects of this nutrient flux on environmental heterogeneity and plant community structure in the understory remain unexplored. In a Brazilian coastal sandy forest, we investigated the effects of the presence of epiphytic tank bromeliads on throughfall chemistry, soil chemistry, soil litter biomass, light, and seedling community structure. In the presence of epiphytic tank bromeliads, the throughfall nitrogen concentration increased twofold, the throughfall phosphorus concentration increased threefold, and the soil patches had a 3.96% higher pH, a 50% higher calcium concentration, and 11.88% less light. By altering the availability of soil resources and conditions, the presence of bromeliads partially shifted the available niche spaces for plant species and indirectly affected the structure of the seedling communities, decreasing their diversity, density, and biomass. For the first time, we showed that the presence of tank bromeliads in the canopy can create characteristic soil patches in the understory, affecting the structure of seedling communities via fertilization. Our results reveal a novel local driver of environmental heterogeneity, reinforcing and expanding the key role of tank bromeliads both in nutrient cycling and plant community structuring of Neotropical coastal sandy forests.


Asunto(s)
Plantones , Suelo , Bosques , Fósforo , Suelo/química , Árboles
3.
PeerJ ; 6: e6024, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30519513

RESUMEN

BACKGROUND: Nitrogen (N) is an important macronutrient that controls the productivity of ecosystems and biological nitrogen fixation (BNF) is a major source of N in terrestrial systems, particularly tropical forests. Bamboo dominates theses forests, but our knowledge regarding the role of bamboo in ecosystem functioning remains in its infancy. We investigated the importance of a native bamboo species to the N cycle of a Neotropical forest. METHODS: We selected 100 sample units (100 m2 each) in a pristine montane Atlantic Forest, in Brazil. We counted all the clumps and live culms of Merostachys neesii bamboo and calculated the specific and total leaf area, as well as litter production and respective N content. Potential N input was estimated based on available data on BNF rates for the same bamboo species, whose N input was then contextualized using information on N cycling components in the study area. RESULTS: With 4,000 live culms ha-1, the native bamboo may contribute up to 11.7 kg N ha-1 during summer (January to March) and 19.6 kg N ha-1 in winter (July to September). When extrapolated for annual values, M. neesii could contribute more than 60 kg N ha-1y-1. DISCUSSION: The bamboo species' contribution to N input may be due to its abundance (habitat availability for microbial colonization) and the composition of the free-living N fixer community on its leaves (demonstrated in previous studies). Although some N is lost during decomposition, this input could mitigate the N deficit in the Atlantic Forest studied by at least 27%. Our findings suggest that M. neesii closely regulates N input and may better explain the high diversity and carbon stocks in the area. This is the first time that a study has investigated BNF using free-living N fixers on the phyllosphere of bamboo.

4.
J Environ Manage ; 226: 416-427, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30142503

RESUMEN

Deforestation is a significant source of man-made carbon in the atmosphere, contributing to the greenhouse gas (GHG) effect. Although carbon releases are associated to the ecosystem functions of climate regulation and are essential ecological processes that sustain life, their incremental economic impact is difficult to estimate. Using the InVEST model, this work quantifies and assesses the value of the carbon balance generated by predictive land-use change (LUC) scenarios for the Northern Coast of São Paulo State, Brazil. In this case, carbon losses are explained by the suppression of natural vegetation and human intervention associated to global warming. We analyzed three scenarios: i) the more conservative "legal framework"; ii) the "status quo", which represents the current development level; and iii) the "new ventures", encompassing all new infrastructure projects in the region. The carbon losses in the "legal framework" and "status quo" scenarios are similar to those of past periods: around 3.7 million MgC in twenty years, pointing to net current values of US$ 47 million. However, carbon losses exceeded 7 million MgC when considering factors linked to the "new ventures" scenario, such as infrastructure logistics, oil-gas exploration and pressure on natural environments. In this case, monetary losses could amount to US$ 90 million in 20 years. Besides carbon release, results also highlight the large amount of carbon still stored in protected areas that is threatened by the regional economics dynamics and requires special attention from the public sector, management bodies and regulators.


Asunto(s)
Carbono , Cambio Climático , Bosques , Brasil , Conservación de los Recursos Naturales , Ecosistema , Humanos
5.
Plant Cell Environ ; 41(7): 1618-1631, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29603771

RESUMEN

Given anticipated climate changes, it is crucial to understand controls on leaf temperatures including variation between species in diverse ecosystems. In the first study of leaf energy balance in tropical montane forests, we observed current leaf temperature patterns on 3 tree species in the Atlantic forest, Brazil, over a 10-day period and assessed whether and why patterns may vary among species. We found large leaf-to-air temperature differences (maximum 18.3 °C) and high leaf temperatures (over 35 °C) despite much lower air temperatures (maximum 22 °C). Leaf-to-air temperature differences were influenced strongly by radiation, whereas leaf temperatures were also influenced by air temperature. Leaf energy balance modelling informed by our measurements showed that observed differences in leaf temperature between 2 species were due to variation in leaf width and stomatal conductance. The results suggest a trade-off between water use and leaf thermoregulation; Miconia cabussu has more conservative water use compared with Alchornea triplinervia due to lower transpiration under high vapour pressure deficit, with the consequence of higher leaf temperatures under thermal stress conditions. We highlight the importance of leaf functional traits for leaf thermoregulation and also note that the high radiation levels that occur in montane forests may exacerbate the threat from increasing air temperatures.


Asunto(s)
Hojas de la Planta/fisiología , Árboles/fisiología , Regulación de la Temperatura Corporal/fisiología , Brasil , Metabolismo Energético , Euphorbiaceae/metabolismo , Euphorbiaceae/fisiología , Melastomataceae/metabolismo , Melastomataceae/fisiología , Nyctaginaceae/metabolismo , Nyctaginaceae/fisiología , Hojas de la Planta/metabolismo , Temperatura , Árboles/metabolismo , Agua/metabolismo
6.
Ecosphere ; 8(11): e02002, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29263939

RESUMEN

Light is the key energy input for all vegetated systems. Forest light regimes are complex, with the vertical pattern of light within canopies influenced by forest structure. Human disturbances in tropical forests impact forest structure and hence may influence the light environment and thus competitiveness of different trees. In this study, we measured vertical diffuse light profiles along a gradient of anthropogenic disturbance, sampling intact, logged, secondary, and fragmented sites in the biodiversity hot spot of the Atlantic forest, southeast Brazil, using photosynthetically active radiation sensors and a novel approach with estimations of vertical light profiles from hemispherical photographs. Our results show clear differences in vertical light profiles with disturbance: Fragmented forests are characterized by rapid light extinction within their low canopies, while the profiles in logged forests show high heterogeneity and high light in the mid-canopy despite decades of recovery. The secondary forest showed similar light profiles to intact forest, but with a lower canopy height. We also show that in some cases the upper canopy layer and heavy liana infestations can severely limit light penetration. Light extinction with height above the ground and depth below the canopy top was highest in fragmented forest and negatively correlated with canopy height. The novel, inexpensive, and rapid methods described here can be applied to other sites to quantify rarely measured vertical light profiles.

7.
Oecologia ; 178(3): 807-17, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25676107

RESUMEN

Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.


Asunto(s)
Biodiversidad , Incendios , Bosques , Herbivoria , Brasil , Ecología , Ecosistema , Fertilizantes , Clima Tropical
8.
Oecologia ; 172(1): 219-29, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23053239

RESUMEN

Surface fires burn extensive areas of tropical forests each year, altering resource availability, biotic interactions, and, ultimately, plant diversity. In transitional forest between the Brazilian cerrado (savanna) and high stature Amazon forest, we took advantage of a long-term fire experiment to establish a factorial study of the interactions between fire, nutrient availability, and herbivory on early plant regeneration. Overall, five annual burns reduced the number and diversity of regenerating stems. Community composition changed substantially after repeated fires, and species common in the cerrado became more abundant. The number of recruits and their diversity were reduced in the burned area, but burned plots closed to herbivores with nitrogen additions had a 14 % increase in recruitment. Diversity of recruits also increased up to 50 % in burned plots when nitrogen was added. Phosphorus additions were related to an increase in species evenness in burned plots open to herbivores. Herbivory reduced seedling survival overall and increased diversity in burned plots when nutrients were added. This last result supports our hypothesis that positive relationships between herbivore presence and diversity would be strongest in treatments that favor herbivory--in this case herbivory was higher in burned plots which were initially lower in diversity. Regenerating seedlings in less diverse plots were likely more apparent to herbivores, enabling increased herbivory and a stronger signal of negative density dependence. In contrast, herbivores generally decreased diversity in more species rich unburned plots. Although this study documents complex interactions between repeated burns, nutrients, and herbivory, it is clear that fire initiates a shift in the factors that are most important in determining the diversity and number of recruits. This change may have long-lasting effects as the forest progresses through succession.


Asunto(s)
Biodiversidad , Incendios , Herbivoria , Insectos/fisiología , Desarrollo de la Planta , Animales , Brasil , Densidad de Población , Dinámica Poblacional
9.
Science ; 333(6046): 1093; author reply 1093, 2011 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-21868655

RESUMEN

Zhao and Running (Reports, 20 August 2010, p. 940) reported a reduction in global terrestrial net primary production (NPP) from 2000 through 2009. We argue that the small trends, regional patterns, and interannual variations that they describe are artifacts of their NPP model. Satellite observations of vegetation activity show no statistically significant changes in more than 85% of the vegetated lands south of 70°N during the same 2000 to 2009 period.


Asunto(s)
Ciclo del Carbono , Sequías , Ecosistema , Plantas/metabolismo , Atmósfera , Biomasa , Dióxido de Carbono , Fotosíntesis , América del Sur
10.
Ecol Evol ; 1(3): 421-34, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22393511

RESUMEN

We estimated carbon and nitrogen stocks in aboveground biomass (AGB) and belowground biomass (BGB) along an elevation range in forest sites located on the steep slopes of the Serra do Mar on the north coast of the State of São Paulo, southeast Brazil. In elevations of 100 m (lowland), 400 m (submontane), and 1000 m (montane) four 1-ha plots were established, and above- (live and dead) and belowground (live and dead) biomass were determined. Carbon and nitrogen concentrations in each compartment were determined and used to convert biomass into carbon and nitrogen stocks. The carbon aboveground stock (C(AGB)) varied along the elevation range from approximately 110 to 150 Mg·ha(-1), and nitrogen aboveground stock (N(AGB)), varied from approximately 1.0 to 1.9 Mg·ha(-1). The carbon belowground stock (C(BGB)) and the nitrogen belowground stock (N(BGB)) were significantly higher than the AGB and varied along the elevation range from approximately 200-300 Mg·ha(-1), and from 14 to 20 Mg·ha(-1), respectively. Finally, the total carbon stock (C(TOTAL)) varied from approximately 320 to 460 Mg·ha(-1), and the nitrogen total stock (N(TOTAL)) from approximately 15 to 22 Mg·ha(-1). Most of the carbon and nitrogen stocks were found belowground and not aboveground as normally found in lowland tropical forests. The above- and belowground stocks, and consequently, the total stocks of carbon and nitrogen increased significantly with elevation. As the soil and air temperature also decreased significantly with elevation, we found a significantly inverse relationship between carbon and nitrogen stocks and temperature. Using this inverse relationship, we made a first approach estimate that an increase of 1°C in soil temperature would decrease the carbon and nitrogen stocks in approximately 17 Mg·ha(-1) and 1 Mg·ha(-1) of carbon and nitrogen, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...