Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Intervalo de año de publicación
2.
Plant Reprod ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019279

RESUMEN

KEY MESSAGE: The miR822 together with of AGO9 protein, modulates monosporic development in Arabidopsis thaliana through the regulation of target genes encoding Cysteine/Histidine-Rich C1 domain proteins, revealing a new role of miRNAs in the control of megaspore formation in flowering plants. In the ovule of flowering plants, the establishment of the haploid generation occurs when a somatic cell differentiates into a megaspore mother cell (MMC) and initiates meiosis. As most flowering plants, Arabidopsis thaliana (Arabidopsis) undergoes a monosporic type of gametogenesis as three meiotically derived cells degenerate, and a single one-the functional megaspore (FM), divides mitotically to form the female gametophyte. The genetic basis and molecular mechanisms that control monosporic gametophyte development remain largely unknown. Here, we show that Arabidopsis plants carrying loss-of-function mutations in the miR822, give rise to extranumerary surviving megaspores that acquire a FM identity and divides without giving rise to differentiated female gametophytes. The overexpression of three miR822 putative target genes encoding cysteine/histidine-rich C1 (DC1) domain proteins, At5g02350, At5g02330 and At2g13900 results in defects equivalent to those found in mutant mir822 plants. The three miR822 targets genes are overexpressed in ago9 mutant ovules, suggesting that miR822 acts through an AGO9-dependent pathway to negatively regulate DC1 domain proteins and restricts the survival of meiotically derived cells to a single megaspore. Our results identify a mechanism mediated by the AGO9-miR822 complex that modulates monosporic female gametogenesis in Arabidopsis thaliana.

4.
Elife ; 122023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37070964

RESUMEN

Archaeological cobs from Paredones and Huaca Prieta (Peru) represent some of the oldest maize known to date, yet they present relevant phenotypic traits corresponding to domesticated maize. This contrasts with the earliest Mexican macro-specimens from Guila Naquitz and San Marcos, which are phenotypically intermediate for these traits, even though they date more recently in time. To gain insights into the origins of ancient Peruvian maize, we sequenced DNA from three Paredones specimens dating ~6700-5000 calibrated years before present (BP), conducting comparative analyses with two teosinte subspecies (Zea mays ssp. mexicana and parviglumis) and extant maize, that include highland and lowland landraces from Mesoamerica and South America. We show that Paredones maize originated from the same domestication event as Mexican maize and was domesticated by ~6700 BP, implying rapid dispersal followed by improvement. Paredones maize shows no relevant gene flow from mexicana, smaller than that observed in teosinte parviglumis. Thus, Paredones samples represent the only maize without confounding mexicana variation found to date. It also harbors significantly fewer alleles previously found to be adaptive to highlands, but not of alleles adaptive to lowlands, supporting a lowland migration route. Our overall results imply that Paredones maize originated in Mesoamerica, arrived in Peru without mexicana introgression through a rapid lowland migration route, and underwent improvements in both Mesoamerica and South America.


The plant we know today as maize or corn began its story 9,000 years ago in modern-day Mexico, when farmers of the Balsas River basin started to carefully breed its ancestor, the wild grass teosinte parviglumis. Recent discoveries suggest the crop may have started to travel to South America before its domestication was fully complete, leading to a complex history of semi-tamed lineages evolving in parallel in different regions. For example, 5,300-year-old corn specimens found in Tehuacán, in central Mexico, still genetically and morphologically resemble teosinte. Meanwhile, cobs harvested about 6,700 to 5,000 years ago on the northern coast of Peru ­ 3800km away from where maize was first domesticated ­ look like the ones we know today. Vallebueno-Estrada et al. aimed to explore the evolutionary history of this Peruvian maize, which was discovered at the archaeological coastal site of Paredones. To do so, they extracted and sequenced its genetic information, and compared these sequences with those from modern varieties of lowland and highland maize, as well as from teosinte parviglumis and teosinte mexicana. The analyses showed that the ancestor of the Paredones maize emerged from teosinte parviglumis like any other lineage, but that it was already domesticated when it started to spread South; by the time it was present in Peru 6,700 years ago, it was genetically closer to modern-day crops. This early departure is consistent with the fact that the Paredones specimens lacked teosinte mexicana genetic variants; this highland relative of lowland parviglumis is believed to have interbred with maize lineages from Central America more recently, when these were brought to higher altitudes. The presence of genetic marks tailored to low-elevation regions suggested that the Paredones maize lineage migrated through a coastal corridor connecting Central and South America, arriving in northern Peru about 2,500 years after first arising from teosinte parviglumis in Central America around 9,000 years ago. Under the care of rapidly developing Central Andean societies, the crop then evolved to adapt to its local conditions. Maize today has spread to all continents besides Antarctica; we produce more of it than wheat, rice or any other grain. How our modern varieties will adapt to the environmental constraints brought by climate change remains unclear. By peering into the history of maize, Vallebueno-Estrada et al. hope to find genetic variations which could inform new breeding strategies that improve the future of this crop.


Asunto(s)
Domesticación , Zea mays , Perú , Zea mays/genética , América del Sur , México
5.
Front Plant Sci ; 14: 1123211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36993852

RESUMEN

Introduction: Although DNA methylation patterns are generally considered to be faithfully inherited in Arabidopsis thaliana (Arabidopsis), there is evidence of reprogramming during both male and female gametogenesis. The gynoecium is the floral reproductive organ from which the ovules develop and generate meiotically derived cells that give rise to the female gametophyte. It is not known whether the gynoecium can condition genomic methylation in the ovule or the developing female gametophyte. Methods: We performed whole genome bisulfite sequencing to characterize the methylation patterns that prevail in the genomic DNA of pre-meiotic gynoecia of wild-type and three mutants defective in genes of the RNA-directed DNA methylation pathway (RdDM): ARGONAUTE4 (AGO4), ARGONAUTE9 (AGO9), and RNA-DEPENDENT RNA POLYMERASE6 (RDR6). Results: By globally analyzing transposable elements (TEs) and genes located across the Arabidopsis genome, we show that DNA methylation levels are similar to those of gametophytic cells rather than those of sporophytic organs such as seedlings and rosette leaves. We show that none of the mutations completely abolishes RdDM, suggesting strong redundancy within the methylation pathways. Among all, ago4 mutation has the strongest effect on RdDM, causing more CHH hypomethylation than ago9 and rdr6. We identify 22 genes whose DNA methylation is significantly reduced in ago4, ago9 and rdr6 mutants, revealing potential targets regulated by the RdDM pathway in premeiotic gyneocia. Discussion: Our results indicate that drastic changes in methylation levels in all three contexts occur in female reproductive organs at the sporophytic level, prior to the alternation of generations within the ovule primordium, offering a possibility to start identifying the function of specific genes acting in the establishment of the female gametophytic phase of the Arabidopsis life cycle.

6.
Plant J ; 112(4): 946-965, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36270031

RESUMEN

Lateral roots (LR) are essential components of the plant edaphic interface; contributing to water and nutrient uptake, biotic and abiotic interactions, stress survival, and plant anchorage. We have identified the TETRATRICOPEPTIDE-REPEAT THIOREDOXIN-LIKE 3 (TTL3) gene as being related to LR emergence and later development. Loss of function of TTL3 leads to a reduced number of emerged LR due to delayed development of lateral root primordia (LRP). This trait is further enhanced in the triple mutant ttl1ttl3ttl4. TTL3 interacts with microtubules and endomembranes, and is known to participate in the brassinosteroid (BR) signaling pathway. Both ttl3 and ttl1ttl3ttl4 mutants are less sensitive to BR treatment in terms of LR formation and primary root growth. The ability of TTL3 to modulate biophysical properties of the cell wall was established under restrictive conditions of hyperosmotic stress and loss of root growth recovery, which was enhanced in ttl1ttl3ttl4. Timing and spatial distribution of TTL3 expression is consistent with its role in development of LRP before their emergence and subsequent growth of LR. TTL3 emerged as a component of the root system morphogenesis regulatory network.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Brasinoesteroides/metabolismo , Pared Celular/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Tiorredoxinas/metabolismo , Proteínas de la Membrana/metabolismo
7.
Methods Mol Biol ; 2512: 249-257, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35818009

RESUMEN

The possibility of analyzing chromatin topology in developing plant embryos is hampered by inaccessibility of the embryo sac, deeply embedded in the maternal seed tissue, following double fertilization. Here we describe a protocol to isolate, purify, and prepare developing Boechera stricta embryos for chromosome conformation capture-based methods as in situ Hi-C experiments. Early globular embryos can be isolated by air-pressure microaspiration, and subsequently washed to eliminate residual cells from the endosperm and maternal seed coat, allowing for pure sampling of selected stages of embryogenesis. This protocol allows for the possibility of comparing genome topology during plant embryonic differentiation since early until late embryo development stages.


Asunto(s)
Brassicaceae , Brassicaceae/genética , Genoma , Semillas
8.
Proc Natl Acad Sci U S A ; 119(17): e2110245119, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35446704

RESUMEN

Efforts to understand the phenotypic transition that gave rise to maize from teosinte have mainly focused on the analysis of aerial organs, with little insights into possible domestication traits affecting the root system. Archeological excavations in San Marcos cave (Tehuacán, Mexico) yielded two well-preserved 5,300 to 4,970 calibrated y B.P. specimens (SM3 and SM11) corresponding to root stalks composed of at least five nodes with multiple nodal roots and, in case, a complete embryonic root system. To characterize in detail their architecture and anatomy, we used laser ablation tomography to reconstruct a three-dimensional segment of their nodal roots and a scutellar node, revealing exquisite preservation of the inner tissue and cell organization and providing reliable morphometric parameters for cellular characteristics of the stele and cortex. Whereas SM3 showed multiple cortical sclerenchyma typical of extant maize, the scutellar node of the SM11 embryonic root system completely lacked seminal roots, an attribute found in extant teosinte and in two specific maize mutants: root with undetectable meristem1 (rum1) and rootless concerning crown and seminal roots (rtcs). Ancient DNA sequences of SM10­a third San Marcos specimen of equivalent age to SM3 and SM11­revealed the presence of mutations in the transcribed sequence of both genes, offering the possibility for some of these mutations to be involved in the lack of seminal roots of the ancient specimens. Our results indicate that the root system of the earliest maize from Tehuacán resembled teosinte in traits important for maize drought adaptation.


Asunto(s)
Domesticación , Zea mays , México , Fenotipo , Zea mays/genética
9.
Sci Rep ; 11(1): 15725, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344949

RESUMEN

The most studied DNA methylation pathway in plants is the RNA Directed DNA Methylation (RdDM), a conserved mechanism that involves the role of noncoding RNAs to control the expansion of the noncoding genome. Genome-wide DNA methylation levels have been reported to correlate with genome size. However, little is known about the catalog of noncoding RNAs and the impact on DNA methylation in small plant genomes with reduced noncoding regions. Because of the small length of intergenic regions in the compact genome of the carnivorous plant Utricularia gibba, we investigated its repertoire of noncoding RNA and DNA methylation landscape. Here, we report that, compared to other angiosperms, U. gibba has an unusual distribution of small RNAs and reduced global DNA methylation levels. DNA methylation was determined using a novel strategy based on long-read DNA sequencing with the Pacific Bioscience platform and confirmed by whole-genome bisulfite sequencing. Moreover, some key genes involved in the RdDM pathway may not represented by compensatory paralogs or comprise truncated proteins, for example, U. gibba DICER-LIKE 3 (DCL3), encoding a DICER endonuclease that produces 24-nt small-interfering RNAs, has lost key domains required for complete function. Our results unveil that a truncated DCL3 correlates with a decreased proportion of 24-nt small-interfering RNAs, low DNA methylation levels, and developmental abnormalities during female gametogenesis in U. gibba. Alterations in female gametogenesis are reminiscent of RdDM mutant phenotypes in Arabidopsis thaliana. It would be interesting to further study the biological implications of the DCL3 truncation in U. gibba, as it could represent an initial step in the evolution of RdDM pathway in compact genomes.


Asunto(s)
Metilación de ADN , Endonucleasas/genética , Endonucleasas/metabolismo , Gametogénesis , Lamiales/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta , ARN no Traducido/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
10.
Plant J ; 106(3): 817-830, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33595147

RESUMEN

Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.


Asunto(s)
Edición Génica/métodos , Semillas/genética , Vigna/genética , Agrobacterium/genética , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/metabolismo , Técnicas de Transferencia de Gen , Genoma de Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Transformación Genética , Vigna/crecimiento & desarrollo , Vigna/metabolismo
11.
Commun Biol ; 3(1): 775, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319863

RESUMEN

In most diploids the centromere-specific histone H3 (CENH3), the assembly site of active centromeres, is encoded by a single copy gene. Persistance of two CENH3 paralogs in diploids species raises the possibility of subfunctionalization. Here we analysed both CENH3 genes of the  diploid dryland crop cowpea. Phylogenetic analysis suggests that gene duplication of CENH3 occurred independently during the speciation of Vigna unguiculata. Both functional CENH3 variants are transcribed, and the corresponding proteins are intermingled in subdomains of different types of centromere sequences in a tissue-specific manner together with the kinetochore protein CENPC. CENH3.2 is removed from the generative cell of mature pollen, while CENH3.1 persists. CRISPR/Cas9-based inactivation of CENH3.1 resulted in delayed vegetative growth and sterility, indicating that this variant is needed for plant development and reproduction. By contrast, CENH3.2 knockout individuals did not show obvious defects during vegetative and reproductive development. Hence, CENH3.2 of cowpea is likely at an early stage of pseudogenization and less likely undergoing subfunctionalization.


Asunto(s)
Proteína A Centromérica/genética , Centrómero/genética , Variación Genética , Vigna/genética , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Evolución Molecular , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica de las Plantas , Hibridación Fluorescente in Situ , Especificidad de Órganos , Fenotipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vigna/clasificación
12.
Plant Methods ; 16: 88, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32549904

RESUMEN

BACKGROUND: The legume cowpea (Vigna unguiculata L.) is extensively grown in sub-Saharan Africa. Cowpea, like many legumes has proved recalcitrant to plant transformation. A rapid transient leaf assay was developed for testing gene expression and editing constructs prior to stable cowpea transformation, to accelerate cowpea and legume crop improvement. RESULTS: Attempts to develop a transient protoplast system for cowpea were unsuccessful. Leaflets from plants 3-4 weeks post-germination were age selected to establish a rapid Agrobacterium (Agro) infiltration-mediated transient system for efficacy testing of gene expression and CRISPR/Cas9 gene editing constructs. In planta, Agro-infiltration of leaflets with fluorescent expression constructs, resulted in necrosis. By contrast, Agro-infiltration of detached leaflets with an Arabidopsis (At) ubiquitin3 promoter:ZsGreen construct, followed by culture on solid nutrient medium resulted in fluorescence in over 48% of leaf cells. Expression efficiency was leaf age-dependent. Three cowpea meiosis genes were identified for CRISPR/Cas9 gene-editing, with the forward aim of meiosis-knock out for asexual seed induction in cowpea. Constructs were designed and tested containing candidate gene-specific guide RNAs, expressed using either the cowpea or Arabidopsis U6 promoters with Cas9 expression directed by either the Arabidopsis 40S ribosomal protein or parsley ubiquitin4-2 promoters. Leaflets were infiltrated with test gene-editing constructs and analytical methods developed to identify gene-specific mutations. A construct that produced mutations predicted to induce functional knockout of in the VuSPO11-1 meiosis gene was tested for efficacy in primary transgenic cowpea plants using a previously established stable transformation protocol. Vuspo11-1 mutants were identified, that cytologically phenocopied spo11-1 mutants previously characterized in Arabidopsis, and rice. Importantly, a biallelic male and female sterile mutant was identified in primary transgenics, exhibiting the expected defects in 100% of examined male and female meiocytes. CONCLUSION: The transient, detached cowpea leaf assay, and supporting analytical methods developed, provide a rapid and reproducible means for testing gene expression constructs, and constructs for inducing mutagenesis in genes involved in both vegetative and reproductive developmental programs. The method and tested editing constructs and components have potential application for a range of crop legumes.

13.
Methods Mol Biol ; 2061: 13-24, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31583649

RESUMEN

Here we present an optimized protocol for immunolocalization of meiotic proteins during female meiosis in whole mount tissues. It ensures ovule morphology integrity and homogeneous reagent penetration. The method relies on paraformaldehyde tissue fixation, polyacrylamide embedding, tissue permeabilization, antibody incubation, counterstaining, and confocal microscopy analysis. This protocol has been used in diverse Arabidopsis ecotypes and in the legume Vigna unguiculata.


Asunto(s)
Inmunohistoquímica , Meiosis , Células Vegetales/fisiología , Arabidopsis/citología , Arabidopsis/metabolismo , Inmunohistoquímica/métodos , Microscopía Confocal
14.
Methods Mol Biol ; 1932: 335-345, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30701511

RESUMEN

Determining the in situ pattern of protein expression is crucial to accurately establish regulatory function and mode of action of any plant developmental program. Here, we describe two immunolocalization procedures that are consistently used to determine subcellular localization of ARGONAUTE proteins in the ovule of the Brassicaceae. The first is performed in resin-embedded semi-thin sections of developing ovules that can be observed under bright-field microscopy. The second is based in polyacrylamide immersion of complete (whole-mounted) gynoecia or ovules that are observed under confocal microscopy. Both procedures have been successfully performed to localize proteins involved in RNA-directed DNA methylation during the development of the anatropous bitegmic ovule in Arabidopsis, Brassica, or Boechera species.


Asunto(s)
Arabidopsis/genética , Proteínas Argonautas/genética , Regulación del Desarrollo de la Expresión Génica/genética , Óvulo Vegetal/genética , Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas/genética
15.
Curr Top Dev Biol ; 131: 565-604, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30612631

RESUMEN

Apomixis refers to a set of reproductive mechanisms that invariably rely on avoiding meiotic reduction and fertilization of the egg cell to generate clonal seeds. After having long been considered a strictly asexual oddity leading to extinction, the integration of more than 100 years of embryological, genetic, molecular, and ecological research has revealed apomixis as a widely spread component of the dynamic processes that shape flowering plant evolution. Apomixis involves several flexible and versatile developmental pathways that can be combined within the ovule to produce offspring. Here we review the large body of classic and contemporaneous contributions that have addressed unreduced gamete formation, haploid induction, and parthenogenesis in flowering plants. We emphasize similarities and differences between sexual and apomictic reproduction, and highlight their implications for the evolutionary emergence of asexual reproduction through seeds. On the basis of these comparisons, we propose a model that associates the developmental origin of apomixis to a dynamic epigenetic landscape, in which environmental fluctuations reversibly influence female reproductive development through mechanisms of hybridization and polyploidization.


Asunto(s)
Apomixis/fisiología , Evolución Biológica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Magnoliopsida/crecimiento & desarrollo , Proteínas de Plantas/genética , Magnoliopsida/genética
16.
Ecol Evol ; 7(12): 4465-4474, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28649356

RESUMEN

Sexual reproduction brings together reproductive partners whose long-term interests often differ, raising the possibility of conflict over their reproductive investment. Males that enhance maternal investment in their offspring gain fitness benefits, even if this compromises future reproductive investment by iteroparous females. When the conflict occurs at a genomic level, it may be uncovered by crossing divergent populations, as a mismatch in the coevolved patterns of paternal manipulation and maternal resistance may generate asymmetric embryonic growth. We report such an asymmetry in reciprocal crosses between populations of the fish Girardinichthys multiradiatus. We also show that a fragment of a gene which can influence embryonic growth (Insulin-Like Growth Factor 2; igf2) exhibits a parent-of-origin methylation pattern, where the maternally inherited igf2 allele has much more 5' cytosine methylation than the paternally inherited allele. Our findings suggest that male manipulation of maternal investment may have evolved in fish, while the parent-of-origin methylation pattern appears to be a potential candidate mechanism modulating this antagonistic coevolution process. However, disruption of other coadaptive processes cannot be ruled out, as these can lead to similar effects as conflict.

17.
Science ; 356(6336): 378-379, 2017 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-28450598
18.
Genome Biol Evol ; 9(4): 904-915, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28338960

RESUMEN

The story of how preColumbian civilizations developed goes hand-in-hand with the process of plant domestication by Mesoamerican inhabitants. Here, we present the almost complete sequence of a mitochondrial genome and a partial chloroplast genome from an archaeological maize sample collected at the Valley of Tehuacán, México. Accelerator mass spectrometry dated the maize sample to be 5,040-5,300 years before present (95% probability). Phylogenetic analysis of the mitochondrial genome shows that the archaeological sample branches basal to the other Zea mays genomes, as expected. However, this analysis also indicates that fertile genotype NB is closely related to the archaeological maize sample and evolved before cytoplasmic male sterility genotypes (CMS-S, CMS-T, and CMS-C), thus contradicting previous phylogenetic analysis of mitochondrial genomes from maize. We show that maximum-likelihood infers a tree where CMS genotypes branch at the base of the tree when including sites that have a relative fast rate of evolution thus suggesting long-branch attraction. We also show that Bayesian analysis infer a topology where NB and the archaeological maize sample are at the base of the tree even when including faster sites. We therefore suggest that previous trees suffered from long-branch attraction. We also show that the phylogenetic analysis of the ancient chloroplast is congruent with genotype NB to be more closely related to the archaeological maize sample. As shown here, the inclusion of ancient genomes on phylogenetic trees greatly improves our understanding of the domestication process of maize, one of the most important crops worldwide.


Asunto(s)
Evolución Molecular , Genoma Mitocondrial/genética , Filogenia , Zea mays/genética , Teorema de Bayes , Cloroplastos/genética , Genoma de Planta , Genotipo
19.
Proc Natl Acad Sci U S A ; 113(49): 14151-14156, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27872313

RESUMEN

Pioneering archaeological expeditions lead by Richard MacNeish in the 1960s identified the valley of Tehuacán as an important center of early Mesoamerican agriculture, providing by far the widest collection of ancient crop remains, including maize. In 2012, a new exploration of San Marcos cave (Tehuacán, Mexico) yielded nonmanipulated maize specimens dating at a similar age of 5,300-4,970 calibrated y B.P. On the basis of shotgun sequencing and genomic comparisons to Balsas teosinte and modern maize, we show herein that the earliest maize from San Marcos cave was a partial domesticate diverging from the landraces and containing ancestral allelic variants that are absent from extant maize populations. Whereas some domestication loci, such as teosinte branched1 (tb1) and brittle endosperm2 (bt2), had already lost most of the nucleotide variability present in Balsas teosinte, others, such as teosinte glume architecture1 (tga1) and sugary1 (su1), conserved partial levels of nucleotide variability that are absent from extant maize. Genetic comparisons among three temporally convergent samples revealed that they were homozygous and identical by descent across their genome. Our results indicate that the earliest maize from San Marcos was already inbred, opening the possibility for Tehuacán maize cultivation evolving from reduced founder populations of isolated and perhaps self-pollinated individuals.


Asunto(s)
Domesticación , Genoma de Planta , Zea mays/genética , Arqueología , Variación Genética , Endogamia , México
20.
Front Plant Sci ; 7: 1347, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27635128

RESUMEN

Small RNA (sRNA)-mediated gene silencing represents a conserved regulatory mechanism controlling a wide diversity of developmental processes through interactions of sRNAs with proteins of the ARGONAUTE (AGO) family. On the basis of a large phylogenetic analysis that includes 206 AGO genes belonging to 23 plant species, AGO genes group into four clades corresponding to the phylogenetic distribution proposed for the ten family members of Arabidopsis thaliana. A primary analysis of the corresponding protein sequences resulted in 50 sequences of amino acids (blocks) conserved across their linear length. Protein members of the AGO4/6/8/9 and AGO1/10 clades are more conserved than members of the AGO5 and AGO2/3/7 clades. In addition to blocks containing components of the PIWI, PAZ, and DUF1785 domains, members of the AGO2/3/7 and AGO4/6/8/9 clades possess other consensus block sequences that are exclusive of members within these clades, suggesting unforeseen functional specialization revealed by their primary sequence. We also show that AGO proteins of animal and plant kingdoms share linear sequences of blocks that include motifs involved in posttranslational modifications such as those regulating AGO2 in humans and the PIWI protein AUBERGINE in Drosophila. Our results open possibilities for exploring new structural and functional aspects related to the evolution of AGO proteins within the plant kingdom, and their convergence with analogous proteins in mammals and invertebrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA