Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(4)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37189454

RESUMEN

Individuals with diabetes mellitus present a skeletal muscle myopathy characterized by atrophy. However, the mechanism underlying this muscular alteration remains elusive, which makes it difficult to design a rational treatment that could avoid the negative consequences in muscles due to diabetes. In the present work, the atrophy of skeletal myofibers from streptozotocin-induced diabetic rats was prevented with boldine, suggesting that non-selective channels inhibited by this alkaloid are involved in this process, as has previously shown for other muscular pathologies. Accordingly, we found a relevant increase in sarcolemma permeability of skeletal myofibers of diabetic animals in vivo and in vitro due to de novo expression of functional connexin hemichannels (Cx HCs) containing connexins (Cxs) 39, 43, and 45. These cells also expressed P2X7 receptors, and their inhibition in vitro drastically reduced sarcolemma permeability, suggesting their participation in the activation of Cx HCs. Notably, sarcolemma permeability of skeletal myofibers was prevented by boldine treatment that blocks Cx43 and Cx45 HCs, and now we demonstrated that it also blocks P2X7 receptors. In addition, the skeletal muscle alterations described above were not observed in diabetic mice with myofibers deficient in Cx43/Cx45 expression. Moreover, murine myofibers cultured for 24 h in high glucose presented a drastic increase in sarcolemma permeability and levels of NLRP3, a molecular member of the inflammasome, a response that was also prevented by boldine, suggesting that, in addition to the systemic inflammatory response found in diabetes, high glucose can promote the expression of functional Cx HCs and activation of the inflammasome in skeletal myofibers. Therefore, Cx43 and Cx45 HCs play a critical role in myofiber degeneration, and boldine could be considered a potential therapeutic agent to treat muscular complications due to diabetes.


Asunto(s)
Conexina 43 , Diabetes Mellitus Experimental , Ratones , Ratas , Animales , Conexina 43/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Inflamasomas/metabolismo , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Conexinas/metabolismo , Glucosa/metabolismo
2.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32751416

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal disease that causes cardiomyopathy and is associated with oxidative stress. In the heart, oxidative stress interferes with the location of connexin 43 (Cx43) to the intercalated discs causing its lateralization to the plasma membrane where Cx43 forms hemichannels. We tested the hypothesis that in DMD cardiomyopathy, increased oxidative stress is associated with the formation and activation of Cx43 hemichannels. For this, we used mdx mice as a DMD model and evaluated cardiac function, nitroso-redox changes and Cx43 hemichannels permeability. Mdx hearts presented increased NADPH oxidase-derived oxidative stress and increased Cx43 S-nitrosylation compared to controls. These redox changes were associated with increased Cx43 lateralization, decreased cardiac contractility and increased arrhythmic events. Pharmacological inhibition of NADPH oxidase using apocynin (one month) reduced systemic oxidative stress and reversed the aforementioned changes towards normal, except Cx43 lateralization. Opening of Cx43 hemichannels was blocked by apocynin treatment and by acute hemichannel blockade with carbenoxolone. NADPH oxidase inhibition also prevented the occurrence of apoptosis in mdx hearts and reversed the ventricular remodeling. These results show that NADPH oxidase activity in DMD is associated with S-nitrosylation and opening of Cx43 hemichannels. These changes lead to apoptosis and cardiac dysfunction and were prevented by NADPH oxidase inhibition.


Asunto(s)
Conexina 43/fisiología , Distrofia Muscular de Duchenne/metabolismo , Miocardio , Acetofenonas/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos mdx , Miocardio/metabolismo , Miocardio/patología , NADPH Oxidasas/antagonistas & inhibidores , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos
3.
PLoS One ; 11(8): e0160813, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27529477

RESUMEN

S-nitrosylation of several Ca2+ regulating proteins in response to ß-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether ß-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (-25-30%) and basal S-nitrosylation of total proteins (-25-60%), RyR2, SERCA2 and LTCC (-60-75%). NOS-1 inhibition reduced (-25-40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (-85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) ß-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its inotropic effect.


Asunto(s)
Corazón/fisiología , Contracción Miocárdica , Miocardio/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Receptores Adrenérgicos beta/metabolismo , S-Nitrosotioles/metabolismo , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/metabolismo , Corazón/efectos de los fármacos , Isoproterenol/farmacología , Masculino , Contracción Miocárdica/efectos de los fármacos , Miocardio/citología , Oxidación-Reducción/efectos de los fármacos , Fosforilación/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
4.
J Diabetes Res ; 2013: 593672, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24416726

RESUMEN

Diabetic nephropathy alters both structure and function of the kidney. These alterations are associated with increased levels of reactive oxygen species, matrix proteins, and proinflammatory molecules. Inflammation decreases gap junctional communication and increases hemichannel activity leading to increased membrane permeability and altering tissue homeostasis. Since current treatments for diabetic nephropathy do not prevent renal damage, we postulated an alternative treatment with boldine, an alkaloid obtained from boldo with antioxidant, anti-inflammatory, and hypoglycemic effects. Streptozotocin-induced diabetic and control rats were treated or not treated with boldine (50 mg/Kg/day) for ten weeks. In addition, mesangial cells were cultured under control conditions or in high glucose concentration plus proinflammatory cytokines, with or without boldine (100 µmol/L). Boldine treatment in diabetic animals prevented the increase in glycemia, blood pressure, renal thiobarbituric acid reactive substances and the urinary protein/creatinine ratio. Boldine also reduced alterations in matrix proteins and markers of renal damage. In mesangial cells, boldine prevented the increase in oxidative stress, the decrease in gap junctional communication, and the increase in cell permeability due to connexin hemichannel activity induced by high glucose and proinflammatory cytokines but did not block gap junction channels. Thus boldine prevented both renal and cellular alterations and could be useful for preventing tissue damage in diabetic subjects.


Asunto(s)
Antioxidantes/uso terapéutico , Aporfinas/uso terapéutico , Diabetes Mellitus Experimental/tratamiento farmacológico , Nefropatías Diabéticas/prevención & control , Animales , Células Cultivadas , Nefropatías Diabéticas/fisiopatología , Evaluación Preclínica de Medicamentos , Pruebas de Función Renal , Masculino , Peumus , Extractos Vegetales/uso terapéutico , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...