Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 11(11)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38007239

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cells targeting CD19 mediate potent and durable effects in B-cell malignancies. However, antigen loss or downregulation is a frequent cause of resistance. Here, we report development of a novel CAR T-cell therapy product to target CD79b, a pan B-cell antigen, widely expressed in most B-cell lymphomas. METHODS: We generated a novel anti-CD79b monoclonal antibody by hybridoma method. The specificity of the antibody was determined by testing against isogenic cell lines with human CD79b knock-in or knock-out. A single-chain variable fragment derived from the monoclonal antibody was used to make a panel of CD79b-targeting CAR molecules containing various hinge, transmembrane, and co-stimulatory domains. These were lentivirally transduced into primary T cells and tested for antitumor activity in in vitro and in vivo B-cell lymphoma models. RESULTS: We found that the novel anti-CD79b monoclonal antibody was highly specific and bound only to human CD79b and no other cell surface protein. In testing the various CD79b-targeting CAR molecules, superior antitumor efficacy in vitro and in vivo was found for a CAR consisting CD8α hinge and transmembrane domains, an OX40 co-stimulatory domain, and a CD3ζ signaling domain. This CD79b CAR specifically recognized human CD79b-expressing lymphoma cell lines but not CD79b knock-out cell lines. CD79b CAR T cells, generated from T cells from either healthy donors or patients with lymphoma, proliferated, produced cytokines, degranulated, and exhibited robust cytotoxic activity in vitro against CD19+ and CD19- lymphoma cell lines and patient-derived lymphoma tumors relapsing after prior CD19 CAR T-cell therapy. Furthermore, CD79b CAR T cells were highly efficient at eradicating pre-established lymphoma tumors in vivo in three aggressive lymphoma xenograft models, including two cell line-derived xenografts and one patient-derived xenograft. Notably, these CAR T cells did not demonstrate any significant tonic signaling activity or markers of exhaustion. CONCLUSION: Our results indicated that this novel CD79b CAR T-cell therapy product has robust antitumor activity against B-cell lymphomas. These results supported initiation of a phase 1 clinical trial to evaluate this product in patients with relapsed or refractory B-cell lymphomas.


Asunto(s)
Linfoma de Células B , Receptores Quiméricos de Antígenos , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico , Linfocitos T , Anticuerpos Monoclonales/metabolismo
2.
Biomolecules ; 12(9)2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-36139163

RESUMEN

Coenzyme A (CoA) is an essential co-factor at the intersection of diverse metabolic pathways. Cellular CoA biosynthesis is regulated at the first committed step-phosphorylation of pantothenic acid-catalyzed by pantothenate kinases (PANK1,2,3 in humans, PANK3 being the most highly expressed). Despite the critical importance of CoA in metabolism, the differential roles of PANK isoforms remain poorly understood. Our investigations of PANK proteins as potential precision oncology collateral lethality targets (PANK1 is co-deleted as part of the PTEN locus in some highly aggressive cancers) were severely hindered by a dearth of commercial antibodies that can reliably detect endogenous PANK3 protein. While we successfully validated commercial antibodies for PANK1 and PANK2 using CRISPR knockout cell lines, we found no commercial antibody that could detect endogenous PANK3. We therefore set out to generate a mouse monoclonal antibody against human PANK3 protein. We demonstrate that a clone (Clone MDA-299-62A) can reliably detect endogenous PANK3 protein in cancer cell lines, with band-specificity confirmed by CRISPR PANK3 knockout and knockdown cell lines. Sub-cellular fractionation shows that PANK3 is overwhelmingly cytosolic and expressed broadly across cancer cell lines. PANK3 monoclonal antibody MDA-299-62A should prove a valuable tool for researchers investigating this understudied family of metabolic enzymes in health and disease.


Asunto(s)
Neoplasias , Ácido Pantoténico , Animales , Anticuerpos Monoclonales , Coenzima A , Humanos , Ratones , Medicina de Precisión , Isoformas de Proteínas
3.
Front Immunol ; 13: 794684, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720386

RESUMEN

Immunotherapies such as checkpoint blockade therapies are known to enhance anti-melanoma CD8+ T cell immunity, but only a fraction of patients treated with these therapies achieve durable immune response and disease control. It may be that CD8+ T cells need help from other immune cells to generate effective and long-lasting anti-tumor immunity or that CD8+ T cells alone are insufficient for complete tumor regression and cure. Melanoma contains significant numbers of B cells; however, the role of B cells in anti-melanoma immunity is controversial. In this study, B16 melanoma mouse models were used to determine the role of B cells in anti-melanoma immunity. C57BL/6 mice, B cell knockout (KO) C57BL/6 mice, anti-CD19, and anti-CXCL13 antibody-treated C57BL/6 mice were used to determine treatment efficacy and generation of tumor-specific CD8+ T cells in response to PD-L1 blockade alone or combination with TLR-7/8 activation. Whole transcriptome analysis was performed on the tumors from B cell depleted and WT mice, untreated or treated with anti-PD-L1. Both CD40-positive and CD40-negative B cells were isolated from tumors of TLR-7/8 agonist-treated wild-type mice and adoptively transferred into tumor-bearing B cell KO mice, which were treated with anti-PD-L1 and TLR-7/8 agonist. Therapeutic efficacy was determined in the presence of activated or inactivated B cells. Microarray analysis was performed on TLR-7/8-treated tumors to look for the B cell signatures. We found B cells were required to enhance the therapeutic efficacy of monotherapy with anti-PD-L1 antibody and combination therapy with anti-PD-L1 antibody plus TLR-7/8 agonist. However, B cells were not essential for anti-CTLA-4 antibody activity. Interestingly, CD40-positive but not CD40-negative B cells contributed to anti-melanoma immunity. In addition, melanoma patients' TCGA data showed that the presence of B cell chemokine CXCL13 and B cells together with CD8+ T cells in tumors were strongly associated with improved overall survival. Our transcriptome data suggest that the absence of B cells enhances immune checkpoints expression in the tumors microenvironment. These results revealed the importance of B cells in the generation of effective anti-melanoma immunity in response to PD-1-PD-L1 blockade immunotherapy. Our findings may facilitate the design of more effective anti-melanoma immunotherapy.


Asunto(s)
Linfocitos T CD8-positivos , Melanoma Experimental , Animales , Anticuerpos/uso terapéutico , Humanos , Inmunoterapia/métodos , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 7 , Microambiente Tumoral
4.
J Biol Chem ; 298(4): 101821, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35283189

RESUMEN

Antibodies that target immune checkpoint proteins such as programmed cell death protein 1, programmed death ligand 1, and cytotoxic T-lymphocyte-associated antigen 4 in human cancers have achieved impressive clinical success; however, a significant proportion of patients fail to respond to these treatments. Galectin-9 (Gal-9), a ß-galactoside-binding protein, has been shown to induce T-cell death and facilitate immunosuppression in the tumor microenvironment by binding to immunomodulatory receptors such as T-cell immunoglobulin and mucin domain-containing molecule 3 and the innate immune receptor dectin-1, suggesting that it may have potential as a target for cancer immunotherapy. Here, we report the development of two novel Gal-9-neutralizing antibodies that specifically react with the N-carbohydrate-recognition domain of human Gal-9 with high affinity. We also show using cell-based functional assays that these antibodies efficiently protected human T cells from Gal-9-induced cell death. Notably, in a T-cell/tumor cell coculture assay of cytotoxicity, these antibodies significantly promoted T cell-mediated killing of tumor cells. Taken together, our findings demonstrate potent inhibition of human Gal-9 by neutralizing antibodies, which may open new avenues for cancer immunotherapy.


Asunto(s)
Anticuerpos Neutralizantes , Muerte Celular , Galectinas , Linfocitos T , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Neutralizantes/farmacología , Muerte Celular/efectos de los fármacos , Galectinas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/terapia , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Microambiente Tumoral
5.
Methods Mol Biol ; 2435: 73-93, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34993940

RESUMEN

Since its inception in 1975, the hybridoma technology revolutionized science and medicine, facilitating discoveries in almost any field from the laboratory to the clinic. Many technological advancements have been developed since then, to create these "magical bullets." Phage and yeast display libraries expressing the variable heavy and light domains of antibodies, single B-cell cloning from immunized animals of different species including humans or in silico approaches, all have rendered a myriad of newly developed antibodies or improved design of existing ones. However, still the majority of these antibodies or their recombinant versions are from hybridoma origin, a preferred methodology that trespass species barriers, due to the preservation of the natural functions of immune cells in producing the humoral response: antigen specific immunoglobulins. Remarkably, this methodology can be reproduced in small laboratories without the need of sophisticate equipment. In this chapter, we will describe the most recent methods utilized by our Monoclonal Antibodies Core Facility at the University of Texas-M.D. Anderson Cancer Center. During the last 10 years, the methods, techniques, and expertise implemented in our core had generated more than 350 antibodies for various applications.


Asunto(s)
Anticuerpos Monoclonales , Linfocitos B , Animales , Anticuerpos Monoclonales/genética , Antígenos , Hibridomas , Tecnología
6.
Clin Cancer Res ; 25(21): 6417-6428, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31332047

RESUMEN

PURPOSE: Recent studies demonstrate the role of the tumor microenvironment in tumor progression. However, strategies used to overcome the malignant phenotypes of cancer cells modulated by the microenvironment have not been thoroughly explored. In this study, we evaluated the therapeutic efficacy of a newly developed mAb targeting microfibril-associated protein 5 (MFAP5), which is secreted predominately by cancer-associated fibroblast (CAF), in ovarian and pancreatic cancer models.Experimental Design: MAbs were developed using human MFAP5 recombinant protein as an antigen in mice, and antibodies from hybridoma clones were evaluated for their specificity to human and murine MFAP5. An Octet RED384 system was used to determine the kinetics of binding affinity and the specificity of the antibody clones, which were followed by epitope mapping and functional characterization by in vitro assays. The therapeutic efficacy of a lead anti-MFAP5 antibody clone 130A in tumor suppression was evaluated by ovarian tumor- and pancreatic tumor-bearing mouse models. RESULTS: Three hybridoma clones, which produced antibodies with high affinity and specificity to MFAP5, were selected for functional studies. Antibody clone 130A, which recognizes a common epitope shared between human and murine MFAP5 protein, was further selected for in vivo studies. Results showed that clone 130A downregulated MFAP5-induced collagen production in CAFs, suppressed intratumoral microvessel leakiness, and enhanced paclitaxel bioavailability in both ovarian and pancreatic cancer mouse models. CONCLUSIONS: These data suggest that MFAP5 blockade using an immunologic approach inhibits fibrosis, induces tumor vessel normalization, and enhances chemosensitivity in ovarian and pancreatic cancer, and can be used as a novel therapeutic agent.


Asunto(s)
Proteínas Contráctiles/genética , Fibrosis/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proteínas Contráctiles/antagonistas & inhibidores , Progresión de la Enfermedad , Femenino , Fibrosis/genética , Fibrosis/inmunología , Fibrosis/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunoterapia/métodos , Ratones , Neoplasias Ováricas/genética , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
7.
Biol Proced Online ; 16(1): 3, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24495546

RESUMEN

BACKGROUND: Although genetically engineered cells have been used to generate monoclonal antibodies (mAbs) against numerous proteins, no study has used them to generate mAbs against glycosylphosphatidylinositol (GPI)-anchored proteins. The GPI-linked protein Rae-1, an NKG2D ligand member, is responsible for interacting with immune surveillance cells. However, very few high-quality mAbs against Rae-1 are available for use in multiple analyses, including Western blotting, immunohistochemistry, and flow cytometry. The lack of high-quality mAbs limits the in-depth analysis of Rae-1 fate, such as shedding and internalization, in murine models. Moreover, currently available screening approaches for identifying high-quality mAbs are excessively time-consuming and costly. RESULTS: We used Rae-1-overexpressing CT26 tumor cells to generate 60 hybridomas that secreted mAbs against Rae-1. We also developed a streamlined screening strategy for selecting the best anti-Rae-1 mAb for use in flow cytometry assay, enzyme-linked immunosorbent assay, Western blotting, and immunostaining. CONCLUSIONS: Our cell line-based immunization approach can yield mAbs against GPI-anchored proteins, and our streamlined screening strategy can be used to select the ideal hybridoma for producing such mAbs.

8.
J Immunol ; 191(7): 3641-50, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24014877

RESUMEN

Current cancer vaccines induce tumor-specific T cell responses without sustained tumor regression because immunosuppressive elements within the tumor induce exhaustion of effector T cells and infiltration of immune-suppressive regulatory T cells (Tregs). Therefore, much effort has been made to generate agonistic Abs targeting members of the TNFR superfamily, such as OX40, 4-1BB, and GITR, expressed on effector T cells and Tregs, to reinvigorate T cell effector function and block Treg-suppressive function. In this article, we describe the development of a panel of anti-human OX40 agonistic mouse mAbs that could promote effector CD4(+) and CD8(+) T cell proliferation, inhibit the induction of CD4(+) IL-10 -producing type 1 regulatory T cells, inhibit the expansion of ICOS(+)IL-10(+) Tregs, inhibit TGF-ß-induced FOXP3 expression on naive CD4(+) T cells, and block natural Treg-suppressive function. We humanized two anti-human OX40 mAb clones, and they retained the potency of their parental clones. These Abs should provide broad opportunities for potential combination therapy to treat a wide realm of cancers and preventative vaccines against infectious diseases.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Receptores OX40/antagonistas & inhibidores , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Macaca mulatta , Ratones , Unión Proteica , Receptores OX40/metabolismo
9.
J Biol Chem ; 283(12): 8046-54, 2008 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-18182388

RESUMEN

The Notch pathway regulates the development of many tissues and cell types and is involved in a variety of human diseases, making it an attractive potential therapeutic target. This promise has been limited by the absence of potent inhibitors or agonists that are specific for individual human Notch receptors (NOTCH1-4). Using an unbiased functional screening, we identified monoclonal antibodies that specifically inhibit or induce activating proteolytic cleavages in NOTCH3. Remarkably, the most potent inhibitory and activating antibodies bind to overlapping epitopes within a juxtamembrane negative regulatory region that protects NOTCH3 from proteolysis and activation in its resting autoinhibited state. The inhibitory antibodies revert phenotypes conveyed on 293T cells by NOTCH3 signaling, such as increased cellular proliferation, survival, and motility, whereas the activating antibody mimics some of the effects of ligand-induced Notch activation. These findings provide insights into the mechanisms of Notch autoinhibition and activation and pave the way for the further development of specific antibody-based modulators of the Notch receptors, which are likely to be of utility in a wide range of experimental and therapeutic settings.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Especificidad de Anticuerpos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores Notch/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Movimiento Celular/genética , Movimiento Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Epítopos/genética , Epítopos/inmunología , Epítopos/metabolismo , Humanos , Receptor Notch3 , Receptores Notch/genética , Receptores Notch/inmunología , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...