Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
IEEE Trans Med Imaging ; PP2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38739509

RESUMEN

X-ray computed tomography (CT) is a crucial tool for non-invasive medical diagnosis that uses differences in materials' attenuation coefficients to generate contrast and provide 3D information. Grating-based dark-field-contrast X-ray imaging is an innovative technique that utilizes small-angle scattering to generate additional co-registered images with additional microstructural information. While it is already possible to perform human chest dark-field radiography, it is assumed that its diagnostic value increases when performed in a tomographic setup. However, the susceptibility of Talbot-Lau interferometers to mechanical vibrations coupled with a need to minimize data acquisition times has hindered its application in clinical routines and the combination of X-ray dark-field imaging and large field-of-view (FOV) tomography in the past. In this work, we propose a processing pipeline to address this issue in a human-sized clinical dark-field CT prototype. We present the corrective measures that are applied in the employed processing and reconstruction algorithms to mitigate the effects of vibrations and deformations of the interferometer gratings. This is achieved by identifying spatially and temporally variable vibrations in air reference scans. By translating the found correlations to the sample scan, we can identify and mitigate relevant fluctuation modes for scans with arbitrary sample sizes. This approach effectively eliminates the requirement for sample-free detector area, while still distinctly separating fluctuation and sample information. As a result, samples of arbitrary dimensions can be reconstructed without being affected by vibration artifacts. To demonstrate the viability of the technique for human-scale objects, we present reconstructions of an anthropomorphic thorax phantom.

2.
Radiologie (Heidelb) ; 63(7): 513-522, 2023 Jul.
Artículo en Alemán | MEDLINE | ID: mdl-37341743

RESUMEN

INTRODUCTION: The spatial and contrast resolution of conventional planar or computed tomographic X­ray techniques is not sufficient to investigate microstructures of tissues. Dark-field imaging with X­rays is an emerging technology that recently provided the first clinical results and makes diagnostic use of interactions of the beams with tissue due to their wave character. APPLICATION: Dark-field imaging can provide information about the microscopic structure or porosity of the tissue under investigation that is otherwise inaccessible. This makes it a valuable complement to conventional X­ray imaging, which can only account for attenuation. Our results demonstrate that X­ray dark-field imaging provides pictorial information about the underlying microstructure of the lung in humans. Given the close relationship between alveolar structure and the functional state of the lung, this is of great importance for diagnosis and therapy monitoring and may contribute to a better understanding of lung diseases in the future. In the early detection of chronic obstructive pulmonary disease, which is usually associated with structural impairment of the lung, this novel technique could help to facilitate its diagnosis. PERSPECTIVE: The application of dark-field imaging to computed tomography is still under development because it is technically difficult. Meanwhile, a prototype for experimental application has been developed and is currently being tested on a variety of materials. Use in humans is conceivable especially for tissues whose microstructure favors characteristic interactions due to the wave nature of the X­rays.


Asunto(s)
Enfermedades Pulmonares , Tomografía Computarizada por Rayos X , Humanos , Rayos X , Radiografía , Tomografía Computarizada por Rayos X/métodos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen
3.
IEEE Trans Med Imaging ; 42(10): 2876-2885, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37115841

RESUMEN

Grating-based phase- and dark-field-contrast X-ray imaging is a novel technology that aims to extend conventional attenuation-based X-ray imaging by unlocking two additional contrast modalities. The so called phase-contrast and dark-field channels provide enhanced soft tissue contrast and additional microstructural information. Accessing this additional information comes at the expense of a more intricate measurement setup and necessitates sophisticated data processing. A big challenge for translating grating-based dark-field computed tomography to medical applications lies in minimizing the data acquisition time. While a continuously moving detector is ideal, it prohibits conventional phase stepping techniques that require multiple projections under the same angle with different grating positions. One solution to this problem is the so-called sliding window processing approach that is compatible with continuous data acquisition. However, conventional sliding window techniques lead to crosstalk-artifacts between the three image channels, if the projection of the sample moves too fast on the detector within a processing window. In this work we introduce a new interpretation of the phase retrieval problem for continuous acquisitions as a demodulation problem. In this interpretation, we identify the origin of the crosstalk-artifacts as partially overlapping modulation side bands. Furthermore, we present three algorithmic extensions that improve the conventional sliding-window-based phase retrieval and mitigate crosstalk-artifacts. The presented algorithms are tested in a simulation study and on experimental data from a human-scale dark-field CT prototype. In both cases they achieve a substantial reduction of the occurring crosstalk-artifacts.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Humanos , Rayos X , Tomografía Computarizada por Rayos X/métodos , Radiografía , Simulación por Computador , Fantasmas de Imagen
4.
PLoS One ; 18(4): e0279323, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37058505

RESUMEN

BACKGROUND: The differentiation of minimal-fat-or low-fat-angiomyolipomas from other renal lesions is clinically challenging in conventional computed tomography. In this work, we have assessed the potential of grating-based x-ray phase-contrast computed tomography (GBPC-CT) for visualization and quantitative differentiation of minimal-fat angiomyolipomas (mfAMLs) and oncocytomas from renal cell carcinomas (RCCs) on ex vivo renal samples. MATERIALS AND METHODS: Laboratory GBPC-CT was performed at 40 kVp on 28 ex vivo kidney specimens including five angiomyolipomas with three minimal-fat (mfAMLs) and two high-fat (hfAMLs) subtypes as well as three oncocytomas and 20 RCCs with eight clear cell (ccRCCs), seven papillary (pRCCs) and five chromophobe RCC (chrRCC) subtypes. Quantitative values of conventional Hounsfield units (HU) and phase-contrast Hounsfield units (HUp) were determined and histogram analysis was performed on GBPC-CT and grating-based attenuation-contrast computed tomography (GBAC-CT) slices for each specimen. For comparison, the same specimens were imaged at a 3T magnetic resonance imaging (MRI) scanner. RESULTS: We have successfully matched GBPC-CT images with clinical MRI and histology, as GBPC-CT presented with increased soft tissue contrast compared to absorption-based images. GBPC-CT images revealed a qualitative and quantitative difference between mfAML samples (58±4 HUp) and oncocytomas (44±10 HUp, p = 0.057) and RCCs (ccRCCs: 40±12 HUp, p = 0.012; pRCCs: 43±9 HUp, p = 0.017; chrRCCs: 40±7 HUp, p = 0.057) in contrast to corresponding laboratory attenuation-contrast CT and clinical MRI, although not all differences were statistically significant. Due to the heterogeneity and lower signal of oncocytomas, quantitative differentiation of the samples based on HUp or in combination with HUs was not possible. CONCLUSIONS: GBPC-CT allows quantitative differentiation of minimal-fat angiomyolipomas from pRCCs and ccRCCs in contrast to absorption-based imaging and clinical MRI.


Asunto(s)
Adenoma Oxifílico , Angiomiolipoma , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/patología , Angiomiolipoma/diagnóstico por imagen , Angiomiolipoma/patología , Rayos X , Tomografía Computarizada por Rayos X/métodos , Adenoma Oxifílico/diagnóstico por imagen , Diagnóstico Diferencial , Estudios Retrospectivos
5.
IEEE Trans Med Imaging ; 42(3): 774-784, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36301786

RESUMEN

X-ray computed tomography (CT) is an invaluable imaging technique for non-invasive medical diagnosis. However, for soft tissue in the human body the difference in attenuation is inherently small. Grating-based X-ray phase-contrast is a relatively novel imaging method which detects additional interaction mechanisms between photons and matter, namely refraction and small-angle scattering, to generate additional images with different contrast. The experimental setup involves a Talbot-Lau interferometer whose susceptibility to mechanical vibrations hindered acquisition schemes suitable for clinical routine in the past. We present a processing pipeline to identify spatially and temporally variable fluctuations occurring in an interferometer installed on a continuously rotating clinical CT gantry. The correlations of the vibrations in the modular grating setup are exploited to identify a small number of relevant fluctuation modes, allowing for a sample reconstruction free of vibration artifacts.


Asunto(s)
Interferometría , Vibración , Humanos , Interferometría/métodos , Tomografía Computarizada por Rayos X/métodos , Radiografía , Rayos X
6.
IEEE Trans Med Imaging ; 42(4): 1035-1045, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36395124

RESUMEN

X-ray computed tomography (CT) is an important non-destructive imaging technique, particularly in clinical diagnostics. Even with the latest innovations like dual-energy and photon-counting CT, the image contrast is solely generated from attenuation in the tissue. An extension - fully compatible with these novelties - is dark-field CT, which retrieves an additional, so-called dark-field contrast. Unlike the attenuation channel, the dark-field channel is sensitive to tissue microstructure and porosity below the resolution of the imaging system, which allows additional insights into the health of the lung tissue or the structure of calcifications. The potential clinical value has been demonstrated in several preclinical studies and recently also in radiography patient studies. Just recently the first dark-field CT for the human body was established at the Technical University of Munich and in this paper, we discuss the performance of this prototype. We evaluate the interferometer components and the imposed challenges that the integration into the CT gantry brings by comparing the results to simulations and measurements at a laboratory setup. The influence of the clinical X-ray source on the Talbot-Lau interferometer and the impact of vibrations, which are immanent on the clinical CT gantry, are analyzed in detail to reveal their characteristic frequencies and origin. A beam hardening correction is introduced as an important step to adapt to the poly-chromatic spectrum and make quantitative dark-field imaging possible. We close with an analysis of the image resolution and the applied patient dose, and conclude that the performance is sufficient to suggest initial patient studies using the presented dark-field CT system.


Asunto(s)
Fotones , Tomografía Computarizada por Rayos X , Humanos
7.
IEEE Trans Med Imaging ; 42(1): 220-232, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36112565

RESUMEN

Computed tomography (CT) as an important clinical diagnostics method can profit from extension with dark-field imaging, as it is currently restricted to X-rays' attenuation contrast only. Dark-field imaging allows access to more tissue properties, such as micro-structural texture or porosity. The up-scaling process to clinical scale is complex because several design constraints must be considered. The two most important ones are that the finest grating is limited by current manufacturing technology to a [Formula: see text] period and that the interferometer should fit into the CT gantry with minimal modifications only. In this work we discuss why an inverse interferometer and a triangular G1 profile are advantageous and make a compact and sensitive interferometer implementation feasible. Our evaluation of the triangular grating profile reveals a deviation in the interference pattern compared to standard grating profiles, which must be considered in the subsequent data processing. An analysis of the grating orientation demonstrates that currently only a vertical layout can be combined with cylindrical bending of the gratings. We also provide an in-depth discussion, including a new simulation approach, of the impact of the extended X-ray source spot which can lead to large performance loss and present supporting experimental results. This analysis reveals a vastly increased sensitivity to geometry and grating period deviations, which must be considered early in the system design process.


Asunto(s)
Interferometría , Tomografía Computarizada por Rayos X , Humanos , Interferometría/métodos , Tomografía Computarizada por Rayos X/métodos , Radiografía , Rayos X , Simulación por Computador
8.
Commun Med (Lond) ; 2(1): 147, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411311

RESUMEN

BACKGROUND: Currently, alternative medical imaging methods for the assessment of pulmonary involvement in patients infected with COVID-19 are sought that combine a higher sensitivity than conventional (attenuation-based) chest radiography with a lower radiation dose than CT imaging. METHODS: Sixty patients with COVID-19-associated lung changes in a CT scan and 40 subjects without pathologic lung changes visible in the CT scan were included (in total, 100, 59 male, mean age 58 ± 14 years). All patients gave written informed consent. We employed a clinical setup for grating-based dark-field chest radiography, obtaining both a dark-field and a conventional attenuation image in one image acquisition. Attenuation images alone, dark-field images alone, and both displayed simultaneously were assessed for the presence of COVID-19-associated lung changes on a scale from 1 to 6 (1 = surely not, 6 = surely) by four blinded radiologists. Statistical analysis was performed by evaluation of the area under the receiver-operator-characteristics curves (AUC) using Obuchowski's method with a 0.05 level of significance. RESULTS: We show that dark-field imaging has a higher sensitivity for COVID-19-pneumonia than attenuation-based imaging and that the combination of both is superior to one imaging modality alone. Furthermore, a quantitative image analysis shows a significant reduction of dark-field signals for COVID-19-patients. CONCLUSIONS: Dark-field imaging complements and improves conventional radiography for the visualisation and detection of COVID-19-pneumonia.


Computed tomography (CT) imaging uses X-rays to obtain images of the inside of the body. It is used to look at lung damage in patients with COVID-19. However, CT imaging exposes the patient to a considerable amount of radiation. As radiation exposure can lead to the development of cancer, exposure should be minimised. Conventional plain X-ray imaging uses lower amounts of radiation but lacks sensitivity. We used dark-field chest X-ray imaging, which also uses low amounts of radiation, to assess the lungs of patients with COVID-19. Radiologists identified pneumonia in patients more easily from dark-field images than from usual plain X-ray images. We anticipate dark-field X-ray imaging will be useful to follow-up patients suspected of having lung damage.

9.
Sci Rep ; 12(1): 5405, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354819

RESUMEN

Grating-based X-ray imaging employs high aspect ratio absorption gratings to generate contrast induced by attenuating, phase-shifting, and small-angle scattering properties of the imaged object. The fabrication of the absorption gratings remains a crucial challenge of the method on its pathway to clinical applications. We explore a simple and fast centrifugal tungsten particle deposition process into silicon-etched grating templates, which has decisive advantages over conventional methods. For that, we use a bimodal tungsten particle suspension which is introduced into a custom designed grating holder and centrifuged at over 1000×g. Gratings with 45 µm period, 450 µm depth, and 170 mm × 38 mm active area are successfully processed reaching a homogeneous absorber filling. The effective absorbing tungsten thickness in the trenches is 207 µm resulting in a filling ratio of 46.6% compared to a voidless filling. The grating was tested in a Talbot-Lau interferometer designed for clinical X-ray dark-field computed tomography, where visibilities up to 33.6% at 60 kV were achieved.


Asunto(s)
Silicio , Tungsteno , Radiografía , Tomografía Computarizada por Rayos X , Rayos X
10.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35131900

RESUMEN

X-ray computed tomography (CT) is one of the most commonly used three-dimensional medical imaging modalities today. It has been refined over several decades, with the most recent innovations including dual-energy and spectral photon-counting technologies. Nevertheless, it has been discovered that wave-optical contrast mechanisms-beyond the presently used X-ray attenuation-offer the potential of complementary information, particularly on otherwise unresolved tissue microstructure. One such approach is dark-field imaging, which has recently been introduced and already demonstrated significantly improved radiological benefit in small-animal models, especially for lung diseases. Until now, however, dark-field CT could not yet be translated to the human scale and has been restricted to benchtop and small-animal systems, with scan durations of several minutes or more. This is mainly because the adaption and upscaling to the mechanical complexity, speed, and size of a human CT scanner so far remained an unsolved challenge. Here, we now report the successful integration of a Talbot-Lau interferometer into a clinical CT gantry and present dark-field CT results of a human-sized anthropomorphic body phantom, reconstructed from a single rotation scan performed in 1 s. Moreover, we present our key hardware and software solutions to the previously unsolved roadblocks, which so far have kept dark-field CT from being translated from the optical bench into a rapidly rotating CT gantry, with all its associated challenges like vibrations, continuous rotation, and large field of view. This development enables clinical dark-field CT studies with human patients in the near future.


Asunto(s)
Dispersión del Ángulo Pequeño , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Animales , Humanos , Imagenología Tridimensional , Interferometría/métodos , Fantasmas de Imagen , Radiografía , Tomógrafos Computarizados por Rayos X , Rayos X
11.
IEEE Trans Med Imaging ; 40(6): 1568-1578, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33617451

RESUMEN

Diagnostic lung imaging is often associated with high radiation dose and lacks sensitivity, especially for diagnosing early stages of structural lung diseases. Therefore, diagnostic imaging methods are required which provide sound diagnosis of lung diseases with a high sensitivity as well as low patient dose. In small animal experiments, the sensitivity of grating-based X-ray dark-field imaging to structural changes in the lung tissue was demonstrated. The energy-dependence of the X-ray dark-field signal of lung tissue is a function of its microstructure and not yet known. Furthermore, conventional X-ray dark-field imaging is not capable of differentiating different types of pathological changes, such as fibrosis and emphysema. Here we demonstrate the potential diagnostic power of grating-based X-ray dark-field in combination with spectral imaging in human chest radiography for the direct differentiation of lung diseases. We investigated the energy-dependent linear diffusion coefficient of simulated lung tissue with different diseases in wave-propagation simulations and validated the results with analytical calculations. Additionally, we modeled spectral X-ray dark-field chest radiography scans to exploit these differences in energy-dependency. The results demonstrate the potential to directly differentiate structural changes in the human lung. Consequently, grating-based spectral X-ray dark-field imaging potentially contributes to the differential diagnosis of structural lung diseases at a clinically relevant dose level.


Asunto(s)
Enfermedades Pulmonares , Enfisema Pulmonar , Animales , Humanos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Enfisema Pulmonar/diagnóstico por imagen , Radiografía , Rayos X
12.
Phys Med Biol ; 65(6): 065010, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31995518

RESUMEN

Spectral and grating-based differential phase-contrast (DPC) x-ray imaging are two emerging technologies that offer additional information compared with conventional attenuation-based x-ray imaging. In the case of spectral imaging, energy-resolved measurements allow the generation of material-specific images by exploiting differences in the energy-dependent attenuation. DPC imaging uses the phase shift that an x-ray wave exhibits when traversing an object as contrast generation mechanism. Recently, we have investigated the combination of these two imaging techniques (spectral DPC imaging) and demonstrated potential advantages compared with spectral imaging. In this work, we present a noise analysis framework that allows the prediction of (co-) variances and noise power spectra for all three imaging methods. Moreover, the optimum acquisition parameters for a particular imaging task can be determined. We use this framework for a performance comparison of all three imaging methods. The comparison is focused on (projected) electron density images since they can be calculated with all three imaging methods. Our study shows that spectral DPC imaging enables the calculation of electron density images with strongly reduced noise levels compared with the other two imaging methods for a large range of clinically relevant pixel sizes. In contrast to conventional DPC imaging, there are no long-range noise correlations for spectral DPC imaging. This means that excessive low frequency noise can be avoided. We confirm the analytical predictions by numerical simulations.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Modelos Teóricos , Radiografía , Relación Señal-Ruido , Algoritmos , Humanos , Fantasmas de Imagen
13.
J Imaging ; 7(1)2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-34460572

RESUMEN

High visibility (0.56) neutron-based multi-modal imaging with a Talbot-Lau interferometer at a wavelength of 1.6 Å is reported. A tomography scan of a strongly absorbing quartz geode sample was performed with both the neutron and an X-ray grating interferometer (70 kVp) for a quantitative comparison. Small scattering structures embedded in the absorbing silica matrix were well resolved in neutron dark-field CT slices with a spatial resolution of about 300 µm. Beneficial effects, such as monochromaticity and stronger penetration power of the used neutron radiation, helped to avoid the beam hardening-related artificial dark-field signal which was present in the X-ray data. Both dark-field modalities show mostly the same structures; however, some scattering features appear only in the neutron domain. Potential applications of combined X-ray and neutron multi-modal CT enabling one to probe both the nuclear and the electron density-related structural properties are discussed. strongly absorbing samples are now accessible for the dark-field modality by the use of thermal neutrons.

14.
IEEE Trans Med Imaging ; 39(3): 578-587, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31380752

RESUMEN

We investigate the combination of two emerging X-ray imaging technologies, namely spectral imaging and differential phase contrast imaging. By acquiring spatially and temporally registered images with several different X-ray spectra, spectral imaging can exploit differences in the energy-dependent attenuation to generate material selective images. Differential phase contrast imaging uses an entirely different contrast generation mechanism: The phase shift that an X-ray wave exhibits when traversing an object. As both methods can determine the (projected) electron density, we propose a novel material decomposition algorithm that uses the spectral and the phase contrast information simultaneously. Numerical experiments show that the combination of these two imaging techniques benefits from the strengths of the individual methods while the weaknesses are mitigated: Quantitatively accurate basis material images are obtained and the noise level is strongly reduced, compared to conventional spectral X-ray imaging.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Funciones de Verosimilitud , Radiografía/métodos , Rayos X , Algoritmos , Simulación por Computador , Medios de Contraste , Humanos
15.
Opt Express ; 27(11): 15943-15955, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163783

RESUMEN

Here we report on a non-destructive, spatially resolving and easy to implement quality and parameter control method for high aspect ratio X-ray absorption gratings. Based on angular X-ray transmission measurements, our proposed technique allows to determine the duty cycle, the transmittance, the height, as well as the local inclination of the absorbing grating structures. A key advantage of the presented method is a fast and extensive grating quality evaluation without the need of implementing an entire grating interferometer. In addition to the local and surface-based analysis using a scanning electron microscope, our non-destructive method provides global averaged macroscopic and spatially resolved grating structure information without the requirement of resolving individual grating lines.

16.
PLoS One ; 14(2): e0212106, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30763375

RESUMEN

OBJECTIVE: Aim of this study was, to demonstrate the feasibility of high-resolution grating-based X-ray phase-contrast computed tomography (PCCT) for quantitative assessment of cartilage. MATERIALS AND METHODS: In an experimental setup, 12 osteochondral samples were harvested from n = 6 bovine knees (n = 2 each). From each knee, one cartilage sample was degraded using 2.5% Trypsin. In addition to PCCT and biomechanical cartilage stiffness measurements, 3T and 7T MRI was performed including MSME SE T2 and ME GE T2* mapping sequences for relaxationtime measurements. Paired t-tests and receiver operating characteristics (ROC) curves were used for statistical analyses. RESULTS: PCCT provided high-resolution images for improved morphological cartilage evaluation as compared to 3T and 7T MRI. Quantitative analyses revealed significant differences between the superficial and the deep cartilage layer for T2 mapping as well as for PCCT (P<0.05). No significant difference was detected for PCCT between healthy and degraded samples (P>0.05). MRI and stiffness measurements showed significant differences between healthy and degraded osteochondral samples. Accuracy in the prediction of cartilage degradation was excellent for MRI and biomechanical analyses. CONCLUSION: In conclusion, high-resolution grating-based X-ray PCCT cartilage imaging is feasible. In addition to MRI and biomechanical analyses it provides complementary, water content independent, information for improved morphological and quantitative characterization of articular cartilage ultrastructure.


Asunto(s)
Cartílago/diagnóstico por imagen , Cartílago/metabolismo , Imagenología Tridimensional , Imagen por Resonancia Magnética/métodos , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/métodos , Animales , Cartílago/citología , Bovinos , Estudios de Factibilidad , Miembro Posterior/diagnóstico por imagen , Imagen por Resonancia Magnética/instrumentación , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/instrumentación
17.
Sci Rep ; 8(1): 15884, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367132

RESUMEN

The conventional form of computed tomography using X-ray attenuation without any contrast agents is of limited use for the characterization of soft tissue in many fields of medical and biological studies. Grating-based phase-contrast computed tomography (gbPC-CT) is a promising alternative imaging method solving the low soft tissue contrast without the need of any contrast agent. While highly sensitive measurements are possible using conventional X-ray sources the spatial resolution does often not fulfill the requirements for specific imaging tasks, such as visualization of pathologies. The focus of this study is the increase in spatial resolution without loss of sensitivity. To overcome this limitation a super-resolution reconstruction based on sub-pixel shifts involving a deconvolution of the image data during each iteration is applied. In our study we achieve an effective pixel size of 28 µm with a conventional rotating anode tube and a photon-counting detector. We also demonstrate that the method can upgrade existing setups to measure tomographies with higher resolution. The results show the increase in resolution at high sensitivity and with the ability to make quantitative measurements. The combination of sparse sampling and statistical iterative reconstruction may be used to reduce the total measurement time. In conclusion, we present high-quality and high-resolution tomographic images of biological samples to demonstrate the experimental feasibility of super-resolution reconstruction.

18.
Sci Rep ; 8(1): 6608, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29700372

RESUMEN

Grating-based phase-contrast computed tomography (GBPC-CT) enables increased soft tissue differentiation, but often suffers from streak artifacts when performing high-sensitivity GBPC-CT of biomedical samples. Current GBPC-CT setups consist of one-dimensional gratings and hence allow to measure only the differential phase-contrast (DPC) signal perpendicular to the direction of the grating lines. Having access to the full two-dimensional DPC signal can strongly reduce streak artefacts showing up as characteristic horizontal lines in the reconstructed images. GBPC-CT with gratings tilted by 45° around the optical axis, combining opposed projections, and reconstructing with filtered backprojection is one method to retrieve the full three-dimensional DPC signal. This approach improves the quality of the tomographic data as already demonstrated at a synchrotron facility. However, additional processing and interpolation is necessary, and the approach fails when dealing with cone-beam geometry setups. In this work, we employ the tilted grating configuration with a laboratory GBPC-CT setup with cone-beam geometry and use statistical iterative reconstruction (SIR) with a forward model accounting for diagonal grating alignment. Our results show a strong reduction of streak artefacts and significant increase in image quality. In contrast to the prior approach our proposed method can be used in a laboratory environment due to its cone-beam compatibility.

19.
Invest Radiol ; 53(1): 26-34, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28846552

RESUMEN

OBJECTIVES: Grating-based phase-contrast computed tomography (gb-PCCT) relies on x-ray refraction instead of absorption to generate high-contrast images in biological soft tissue. The aim of this study was to evaluate the potential of gb-PCCT for the depiction of structural changes in heart disease. MATERIALS AND METHODS: Four human heart specimens from patients with hypertensive disease, ischemic disease, dilated heart disease, and cardiac lipomatosis were examined. The gb-PCCT setup consisted of an x-ray tube (40 kV, 70 mA), grating-interferometer, and detector, and allowed simultaneous acquisition of phase- and absorption-contrast data. With histopathology as the standard of reference, myocardium (MC), fibrotic scar (FS), interstitial fibrosis (IF), and fatty tissue (FT) were visually and quantitatively evaluated. Systematic differences in absorption- and phase-contrast Hounsfield units (HUabs and HUp) were assessed. RESULTS: Thirteen corresponding cross-sections were included, and MC, FS, IF, and FT were found in 13 (100%), 4 (30.8%), 7 (53.8%), and 13 (100%) cross-sections, respectively. Mean HUp/HUabs were 52.5/54.1, 86.6/69.7, 62.4/62.3, and -38.6/-258.9 for MC, FS, IF, and FT, respectively. An overlap in HUabs was observed for MC and IF (P = 0.84) but not for HUp (P < 0.01). Contrast-to-noise ratios were significantly higher in phase- than in absorption-contrast for MC/FT (35.4 vs 7.8; P < 0.01) and for MC/FS (12.3 vs 0.2; P < 0.01). CONCLUSIONS: Given its superior soft tissue contrast, gb-PCCT is able to depict structural changes in different cardiomyopathies, which can currently not be obtained by x-ray absorption-based imaging methods. If current technical limitations can be overcome, gb-PCCT may evolve as a powerful tool for the anatomical assessment of cardiomyopathy.


Asunto(s)
Medios de Contraste , Cardiopatías/diagnóstico por imagen , Corazón/diagnóstico por imagen , Intensificación de Imagen Radiográfica/métodos , Tomografía Computarizada por Rayos X/métodos , Estudios de Evaluación como Asunto , Humanos , Reproducibilidad de los Resultados
20.
Sci Rep ; 7(1): 7476, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28785015

RESUMEN

Grating-based X-ray interferometry offers vast potential for imaging materials and tissues that are not easily visualised using conventional X-ray imaging. Tomographic reconstruction based on X-ray interferometric data provides not only access to the attenuation coefficient of an object, but also the refractive index and information about ultra-small-angle scattering. This improved functionality comes at the cost of longer measurement times because existing projection-based signal extraction algorithms require not only a single measurement per projection angle but several with precise grating movements in between. This obstacle hinders the adaptation of grating-based interferometry into a continuously rotating gantry. Several solutions to this problem have been proposed but all suffer from major drawbacks. We present results using an iterative reconstruction algorithm working directly on the interferograms. The suggested direct approach enables improved image quality, since interpolations and unnecessary assumptions about the object are circumvented. Our results demonstrate that it is possible to successfully reconstruct the linear attenuation coefficient, the refractive index and the linear diffusion coefficient, which is a measure related to ultra-small-angle scattering, using a single measurement per projection angle and without any grating movements. This is a milestone for future clinical implementation of grating-based phase-contrast and dark-field contrast X-ray computed tomography.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...