Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(4): 1324-1337, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38274063

RESUMEN

Template-directed methods are emerging as some of the most effective means to conjugate payloads at selective sites of monoclonal antibodies (mAbs). We have previously reported a method based on an engineered Fc-III reactive peptide to conjugate a radionuclide chelator to K317 of antibodies with the concomitant release of the Fc-III peptide ligand. Here, our method was redesigned to target two lysines proximal to the Fc-III binding site, K248 and K439. Using energy minimization predictions and a semi-combinatorial synthesis approach, we sampled multiple Fc-III amino acid substituents of A3, H5, L6 and E8, which were then converted into Fc-III reactive conjugates. Middle-down MS/MS subunit analysis of the resulting trastuzumab conjugates revealed that K248 and K439 can be selectively targeted using the Fc-III reactive variants L6Dap, L6Orn, L6Y and A3K or A3hK, respectively. Across all variants tested, L6Orn-carbonate appeared to be the best candidate, yielding a degree and yield of conjugation of almost 2 and 100% for a broad array of payloads including radionuclide chelators, fluorescent dyes, click-chemistry reagents, pre-targeted imaging reagents, and some cytotoxic small molecules. Furthermore, L6Orn carbonate appeared to yield similar conjugation results across multiple IgG subtypes. In vivo proof of concept was achieved by conjugation of NODAGA to the PD1/PD-L1 immune checkpoint inhibitor antibody atezolizumab, followed by PET imaging of PD-L1 expression in mice bearing PD-L1 expressing tumor xenograft using radiolabeled [64Cu]Cu-atezolizumab.

2.
EJNMMI Res ; 13(1): 40, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162652

RESUMEN

BACKGROUND: CXCR4-targeted radioligand therapy (RLT) with [177Lu]Lu/[90Y]Y-PentixaTher has recently evolved as a promising therapeutic option for patients with advanced hematological cancers. Given their advanced disease stage, most patients scheduled for PentixaTher RLT require concomitant or bridging chemotherapy to prevent intermittent tumor progression. These (mostly combination) therapies may cause significant downregulation of tumoral CXCR4 expression, challenging the applicability of PentixaTher RLT. This study therefore aimed at investigating the influence of corticosteroids, a central component of these chemotherapies, on CXCR4 regulation in diffuse large B cell lymphoma (DLBCL). METHODS: Different DLBCL cell lines (Daudi, OCI-LY1, SUDHL-4, -5-, -6 and -8) as well as the human T-cell lymphoma cell line Jurkat were incubated with Dexamethasone (Dex; 0.5 and 5 µM, respectively) and Prednisolone (Pred; 5 and 50 µM, respectively) for different time points (2 h, 24 h). Treatment-induced modulation of cellular CXCR4 surface expression was assessed via flow cytometry (FC) and compared to untreated cells. A radioligand binding assay with [125I]CPCR4.3 was performed in parallel using the same cells. To quantify potential corticosteroid treatment effects on tumoral CXCR4 expression in vivo, OCI-LY1 bearing NSG mice were injected 50 µg Dex/mouse i.p. (daily for 6 days). Then, a biodistribution study (1 h p.i.) using [68Ga]PentixaTher was performed, and tracer biodistribution in treated (n = 5) vs untreated mice (n = 5) was compared. RESULTS: In the in vitro experiments, a strongly cell line-dependent upregulation of CXCR4 was observed for both Dex and Pred treatment, with negligible differences between the high and low dose. While in Jurkat, Daudi and SUDHL-8 cells, CXCR4 expression remained unchanged, a 1.5- to 3.5-fold increase in CXCR4 cell surface expression was observed for SUDHL-5 < SUDHL-4 /-6 < OCI-LY1 via FC compared to untreated cells. This increase in CXCR4 expression was also reflected in correspondingly enhanced [125I]CPCR4.3 accumulation in treated cells, with a linear correlation between FC and radioligand binding data. In vivo, Dex treatment led to a general increase of [68Ga]PentixaTher uptake in all organs compared to untreated animals, as a result of a higher tracer concentration in blood. However, we observed an overproportionally enhanced [68Ga]PentixaTher uptake in the OCI-LY1 tumors in treated (21.0 ± 5.5%iD/g) vs untreated (9.2 ± 2.8%iD/g) mice, resulting in higher tumor-to-background ratios in the treatment group. CONCLUSION: Overall, corticosteroid treatment (Dex/Pred) consistently induced an upregulation of CXCR4 expression DBLCL cells in vitro, albeit in a very cell line-dependent manner. For the cell line with the most pronounced Dex-induced CXCR4 upregulation, OCI-LY1, the in vitro findings were corroborated by an in vivo biodistribution study. This confirms that at least the corticosteroid component of stabilizing chemotherapy regimens in DLBCL patients prior to [177Lu]Lu-PentixaTher RLT does not lead to downregulation of the molecular target CXCR4 and may even have a beneficiary effect. However, further studies are needed to investigate if and to what extent the other commonly used chemotherapeutic agents affect CXCR4 expression on DLBCL to ensure the choice of an appropriate treatment regimen prior to [177Lu]Lu/[90Y]Y-PentixaTher RLT.

3.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36139771

RESUMEN

Metabolic syndrome (MetS) refers to cardiometabolic risk factors, such as visceral obesity, dyslipidemia, hyperglycemia/insulin resistance, arterial hypertension and non-alcoholic fatty liver disease (NAFLD). Individuals born after intrauterine growth restriction (IUGR) are particularly at risk of developing metabolic/hepatic disorders later in life. Oxidative stress and cellular senescence have been associated with MetS and are observed in infants born following IUGR. However, whether these mechanisms could be particularly associated with the development of NAFLD in these individuals is still unknown. IUGR was induced in rats by a maternal low-protein diet during gestation versus. a control (CTRL) diet. In six-month-old offspring, we observed an increased visceral fat mass, glucose intolerance, and hepatic alterations (increased transaminase levels, triglyceride and neutral lipid deposit) in male rats with induced IUGR compared with the CTRL males; no differences were found in females. In IUGR male livers, we identified some markers of stress-induced premature senescence (SIPS) (lipofuscin deposit, increased protein expression of p21WAF, p16INK4a and Acp53, but decreased pRb/Rb ratio, foxo-1 and sirtuin-1 protein and mRNA expression) associated with oxidative stress (higher superoxide anion levels, DNA damages, decreased Cu/Zn SOD, increased catalase protein expression, increased nfe2 and decreased keap1 mRNA expression). Impaired lipogenesis pathways (decreased pAMPK/AMPK ratio, increased pAKT/AKT ratio, SREBP1 and PPARγ protein expression) were also observed in IUGR male livers. At birth, no differences were observed in liver histology, markers of SIPS and oxidative stress between CTRL and IUGR males. These data demonstrate that the livers of IUGR males at adulthood display SIPS and impaired liver structure and function related to oxidative stress and allow the identification of specific therapeutic strategies to limit or prevent adverse consequences of IUGR, particularly metabolic and hepatic disorders.

4.
Chem Sci ; 13(14): 3965-3976, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440989

RESUMEN

Antibodies are an attractive therapeutic modality for cancer treatment as they allow the increase of the treatment response rate and avoid the severe side effects of chemotherapy. Notwithstanding the strong benefit of antibodies, the efficacy of anti-cancer antibodies can dramatically vary among patients and ultimately result in no response to the treatment. Here, we have developed a novel means to regioselectively label the Fc domain of any therapeutic antibody with a radionuclide chelator in a single step chemistry, with the aim to study by SPECT/CT imaging if the radiolabeled antibody is capable of targeting cancer cells in vivo. A Fc-III peptide was used as bait to bring a carbonate electrophilic site linked to a metal chelator and to a carboxyphenyl leaving group in close proximity with an antibody Fc nucleophile amino acid (K317), thereby triggering the covalent linkage of the chelator to the antibody lysine, with the concomitant release of the carboxyphenyl Fc-III ligand. Using CHX-A''-DTPA, we radiolabeled trastuzumab with indium-111 and showed in biodistribution and imaging experiments that the antibody accumulated successfully in the SK-OV-3 xenograft tumour implanted in mice. We found that our methodology leads to homogeneous conjugation of CHX-A''-DTPA to the antibody, and confirmed that the Fc domain can be selectively labeled at K317, with a minor level of unspecific labeling on the Fab domain. The present method can be developed as a clinical diagnostic tool to predict the success of the therapy. Furthermore, our Fc-III one step chemistry concept paves the way to a broad array of other applications in antibody bioengineering.

5.
EJNMMI Res ; 12(1): 21, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35403982

RESUMEN

BACKGROUND: Extrapolation of human absorbed doses (ADs) from biodistribution experiments on laboratory animals is used to predict the efficacy and toxicity profiles of new radiopharmaceuticals. Comparative studies between available animal-to-human dosimetry extrapolation methods are missing. We compared five computational methods for mice-to-human AD extrapolations, using two different radiopharmaceuticals, namely [111In]CHX-DTPA-scFv78-Fc and [68Ga]NODAGA-RGDyK. Human organ-specific time-integrated activity coefficients (TIACs) were derived from biodistribution studies previously conducted in our centre. The five computational methods adopted are based on simple direct application of mice TIACs to human organs (M1), relative mass scaling (M2), metabolic time scaling (M3), combined mass and time scaling (M4), and organ-specific allometric scaling (M5), respectively. For [68Ga]NODAGA-RGDyK, these methods for mice-to-human extrapolations were tested against the ADs obtained on patients, previously published by our group. Lastly, an average [68Ga]NODAGA-RGDyK-specific allometric parameter αnew was calculated from the organ-specific biological half-lives in mouse and humans and retrospectively applied to M3 and M4 to assess differences in human AD predictions with the α = 0.25 recommended by previous studies. RESULTS: For both radiopharmaceuticals, the five extrapolation methods showed significantly different AD results (p < 0.0001). In general, organ ADs obtained with M3 were higher than those obtained with the other methods. For [68Ga]NODAGA-RGDyK, no significant differences were found between ADs calculated with M3 and those obtained directly on human subjects (H) (p = 0.99; average M3/H AD ratio = 1.03). All other methods for dose extrapolations resulted in ADs significantly different from those calculated directly on humans (all p ≤ 0.0001). Organ-specific allometric parameters calculated using combined experimental [68Ga]NODAGA-RGDyK mice and human biodistribution data varied significantly. ADs calculated with M3 and M4 after the application of αnew = 0.17 were significantly different from those obtained by the application of α = 0.25 (both p < 0.001). CONCLUSIONS: Available methods for mouse-to-human dosimetry extrapolations provided significantly different results in two different experimental models. For [68Ga]NODAGA-RGDyK, the best approximation of human dosimetry was shown by M3, applying a metabolic scaling to the mouse organ TIACs. The accuracy of more refined extrapolation algorithms adopting model-specific metabolic scaling parameters should be further investigated.

6.
Cancers (Basel) ; 13(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885044

RESUMEN

1C1m-Fc, a promising anti-TEM-1 DOTA conjugate, was labeled with 64Cu to target cancer cells for PET imaging and predicting the efficacy and safety of a previously studied [177Lu]Lu-1C1m-Fc companion therapy. DOTA-conjugated 1C1m-Fc was characterized by mass spectrometry, thin layer chromatography and immunoreactivity assessment. PET/CT and biodistribution studies were performed in human neuroblastoma xenografted mice. Absorbed doses were assessed from biodistribution results and extrapolated to 177Lu based on the [64Cu]Cu-1C1m-Fc data. The immunoreactivity was ≥ 70% after 48 h of incubation in serum, and the specificity of [64Cu]Cu-1C1m-Fc for the target was validated. High-resolution PET/CT images were obtained, with the best tumor-to-organ ratios reached at 24 or 48 h and correlated with results of the biodistribution study. Healthy organs receiving the highest doses were the liver, the kidneys and the uterus. [64Cu]Cu-1C1m-Fc could be of interest to give an indication of 177Lu dosimetry for parenchymal organs. In the uterus and the tumor, characterized by specific TEM-1 expression, the 177Lu-extrapolated absorbed doses are overestimated because of the lack of later measurement time points. Nevertheless, 1C1m-Fc radiolabeled with 64Cu for imaging would appear as an interesting radionuclide companion for therapeutic application with [177Lu]Lu-1C1m-Fc.

7.
Mol Genet Metab ; 134(4): 287-300, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34799272

RESUMEN

Glutaric aciduria type I (GA-I, OMIM # 231670) is an autosomal recessive inborn error of metabolism caused by deficiency of the mitochondrial enzyme glutaryl-CoA dehydrogenase (GCDH). The principal clinical manifestation in GA-I patients is striatal injury most often triggered by catabolic stress. Early diagnosis by newborn screening programs improved survival and reduced striatal damage in GA-I patients. However, the clinical phenotype is still evolving in the aging patient population. Evaluation of long-term outcome in GA-I patients recently identified glomerular filtration rate (GFR) decline with increasing age. We recently created the first knock-in rat model for GA-I harboring the mutation p.R411W (c.1231 C>T), corresponding to the most frequent GCDH human mutation p.R402W. In this study, we evaluated the effect of an acute metabolic stress in form of high lysine diet (HLD) on young Gcdhki/ki rats. We further studied the chronic effect of GCDH deficiency on kidney function in a longitudinal study on a cohort of Gcdhki/ki rats by repetitive 68Ga-EDTA positron emission tomography (PET) renography, biochemical and histological analyses. In young Gcdhki/ki rats exposed to HLD, we observed a GFR decline and biochemical signs of a tubulopathy. Histological analyses revealed lipophilic vacuoles, thinning of apical brush border membranes and increased numbers of mitochondria in proximal tubular (PT) cells. HLD also altered OXPHOS activities and proteome in kidneys of Gcdhki/ki rats. In the longitudinal cohort, we showed a progressive GFR decline in Gcdhki/ki rats starting at young adult age and a decline of renal clearance. Histopathological analyses in aged Gcdhki/ki rats revealed tubular dilatation, protein accumulation in PT cells and mononuclear infiltrations. These observations confirm that GA-I leads to acute and chronic renal damage. This raises questions on indication for follow-up on kidney function in GA-I patients and possible therapeutic interventions to avoid renal damage.


Asunto(s)
Tasa de Filtración Glomerular , Glutaratos/orina , Glutaril-CoA Deshidrogenasa/deficiencia , Riñón/patología , Errores Innatos del Metabolismo/fisiopatología , Animales , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Técnicas de Sustitución del Gen , Humanos , Recién Nacido , Riñón/metabolismo , Masculino , Errores Innatos del Metabolismo/patología , Tamizaje Neonatal , Fosforilación Oxidativa , Mapas de Interacción de Proteínas , Ratas , Vacuolas/patología
8.
Front Med (Lausanne) ; 8: 674656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34409048

RESUMEN

The use of radioactivity in medicine has been developed over a century. The discovery of radioisotopes and their interactions with living cells and tissue has led to the emergence of new diagnostic and therapeutic modalities. The CERN-MEDICIS infrastructure, recently inaugurated at the European Center for Nuclear Research (CERN), provides a wide range of radioisotopes of interest for diagnosis and treatment in oncology. Our objective is to draw attention to the progress made in nuclear medicine in collaboration with CERN and potential future applications, in particular for the treatment of aggressive tumors such as pancreatic adenocarcinoma, through an extensive review of literature. Fifty seven out of two hundred and ten articles, published between 1997 and 2020, were selected based on relevancy. Meetings were held with a multi-disciplinary team, including specialists in physics, biological engineering, chemistry, oncology and surgery, all actively involved in the CERN-MEDICIS project. In summary, new diagnostic, and therapeutic modalities are emerging for the treatment of pancreatic adenocarcinoma. Targeted radiotherapy or brachytherapy could be combined with existing therapies to improve the quality of life and survival of these patients. Many studies are still in the pre-clinical stage but open new paths for patients with poor prognosis.

9.
Pharmaceutics ; 13(1)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451158

RESUMEN

1C1m-Fc, an anti-tumor endothelial marker 1 (TEM-1) scFv-Fc fusion protein antibody, was previously successfully radiolabeled with 177Lu. TEM-1 specific tumor uptake was observed together with a non-saturation dependent liver uptake that could be related to the number of dodecane tetraacetic acid (DOTA) chelator per 1C1m-Fc. The objective of this study was to verify this hypothesis and to find the best DOTA per 1C1m-Fc ratio for theranostic applications. 1C1m-Fc was conjugated with six concentrations of DOTA. High-pressure liquid chromatography, mass spectrometry, immunoreactivity assessment, and biodistribution studies in mice bearing TEM-1 positive tumors were performed. A multi-compartment pharmacokinetic model was used to fit the data and a global pharmacokinetic model was developed to illustrate the effect of liver capture and immunoreactivity loss. Organ absorbed doses in mice were calculated from biodistribution results. A loss of immunoreactivity was observed with the highest DOTA per 1C1m-Fc ratio. Except for the spleen and bone, an increase of DOTA per 1C1m-Fc ratio resulted in an increase of liver uptake and absorbed dose and a decrease of uptake in tumor and other tissues. Pharmacokinetic models correlated these results. The number of DOTA per antibody played a determining role in tumor targeting. One DOTA per 1C1m-Fc gave the best pharmacokinetic behavior for a future translation of [177Lu]Lu-1C1m-Fc in patients.

10.
Am J Nucl Med Mol Imaging ; 11(6): 519-528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003889

RESUMEN

INTRODUCTION: Evaluation of glomerular filtration rate is very important in both preclinical and clinical setting, especially in the context of chronic kidney disease. It is typically performed using 51Cr-EDTA or by imaging with 123I-Hippuran scintigraphy, which has a significantly lower resolution and sensitivity as compared to PET. 68Ga-EDTA represents a valid alternative due to its quick availability using a 68Ge/68Ga generator, while PET/CT enables both imaging of renal function and accurate quantitation of clearance of activity from both plasma and urine. Therefore, we aimed at investigating the use of 68Ga-EDTA as a preclinical tracer for determining renal function in a knock-in rat model known to present progressive decline of renal function. METHODS: 68Ga-EDTA was injected in 23 rats, either wild type (n=10) or knock-in (n=13). By applying a unidirectional, two-compartment model and Rutland-Patlak Plot linear regression analysis, split renal function was determined from the age of 6 weeks to 12 months. RESULTS: Glomerular filtration ranged from 0.025±0.01 ml/min at 6 weeks to 0.049±0.05 ml/min at 6 months in wild type rats. Glomerular filtration was significantly lower in knock-in rats at 6 and 12 months (P<0.01). No significant difference was observed in renal volumes between knock-in and wild type animals, based on imaging-derived volume calculations. CONCLUSIONS: 68Ga-EDTA turned out to be a very promising PET/CT tracer for the evaluation of split renal function. This method allowed detection of progressive renal impairment in a knock-in rat model. Additional validation in a human cohort is warranted to further assess clinical utility in both, healthy individuals and patients with renal impairment.

11.
Eur J Pharm Biopharm ; 158: 233-244, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33271301

RESUMEN

The tumour endothelial marker 1 (TEM1/endosialin/CD248) is a receptor overexpressed in several human solid tumours and silenced in normal adult tissues, representing a suitable and potentially safe target for radioimmunotherapy of sarcoma. To develop new tools with improved TEM1 targeting properties, a new panel of antibody fragments was for the first time evaluated preclinically following 125I radiolabelling. The antibody fragment 1C1m-Fc, with the highest human/murine TEM1 binding affinity, was extensively characterized in vitro and in vivo in a Ewing's sarcoma human xenograft mouse model. In silico studies were also performed to elucidate the influence of a single amino acid mutation in the complementarity-determining region (CDR3) of the heavy chain, upon affinity maturation of the parental clone 1C1-Fc. From this study, 1C1m-Fc emerged as a promising candidate for the development of TEM1-targeted radioimmunoconjugates, namely to be further explored for theranostic applications with other suitable medical radionuclides.


Asunto(s)
Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Inmunoconjugados/administración & dosificación , Neoplasias/radioterapia , Radioinmunoterapia/métodos , Anticuerpos de Cadena Única/administración & dosificación , Animales , Línea Celular Tumoral , Regiones Determinantes de Complementariedad/genética , Simulación por Computador , Femenino , Humanos , Inmunoconjugados/genética , Inmunoconjugados/farmacocinética , Radioisótopos de Yodo , Ratones , Mutación , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacocinética , Anticuerpos de Cadena Única/genética , Anticuerpos de Cadena Única/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
12.
13.
Mol Imaging Biol ; 22(4): 979-991, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31993928

RESUMEN

PURPOSE: Endosialin/tumor endothelial marker-1 (TEM1) is an attractive theranostic target expressed by the microenvironment of a wide range of tumors, as well as by sarcoma and neuroblastoma cells. We report on the radiolabeling and preclinical evaluation of the scFv78-Fc, a fully human TEM1-targeting antibody fragment cross-reactive with mouse TEM1. PROCEDURES: The scFv78-Fc was conjugated with the chelator p-SCN-Bn-CHX-A"-DTPA, followed by labeling with indium-111. The number of chelators per molecule was estimated by mass spectrometry. A conventional saturation assay, extrapolated to infinite antigen concentration, was used to determine the immunoreactive fraction of the radioimmunoconjugate. The radiopharmaceutical biodistribution was assessed in immunodeficient mice grafted with Ewing's sarcoma RD-ES and neuroblastoma SK-N-AS human TEM1-positive tumors. The full biodistribution studies were preceded by a dose-escalation experiment based on the simultaneous administration of the radiopharmaceutical with increasing amounts of unlabeled scFv78-Fc. Radiation dosimetry extrapolations to human adults were obtained from mouse biodistribution data according to established methodologies and additional assumptions concerning the impact of the tumor antigenic sink in the cross-species translation. RESULTS: [111In]CHX-DTPA-scFv78-Fc was obtained with a radiochemical purity > 98 % after 1 h incubation at 42 °C and ultrafiltration. It showed good stability in human serum and > 70 % immunoreactive fraction. Biodistribution data acquired in tumor-bearing mice confirmed fast blood clearance and specific tumor targeting in both xenograft models. The radiopharmaceutical off-target uptake was predominantly abdominal. After a theoretical injection of [111In]CHX-DTPA-scFv78-Fc to the reference person, the organs receiving the highest absorbed dose would be the spleen (0.876 mGy/MBq), the liver (0.570 mGy/MBq) and the kidneys (0.298 mGy/MBq). The total body dose and the effective dose would be 0.058 mGy/MBq and 0.116 mSv/MBq, respectively. CONCLUSIONS: [111In]CHX-DTPA-scFv78-Fc binds specifically to endosialin/TEM1 in vitro and in vivo. Dosimetry estimates are in the range of other monoclonal antibodies radiolabeled with indium-111. [111In]CHX-DTPA-scFv78-Fc could be potentially translated into clinic.


Asunto(s)
Antígenos CD/metabolismo , Radioisótopos de Indio/química , Proteínas de Neoplasias/metabolismo , Radiometría , Animales , Anticuerpos/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones Endogámicos BALB C , Radiofármacos/química , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
14.
EJNMMI Res ; 9(1): 53, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31187358

RESUMEN

BACKGROUND: Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter 152Tb [(T1/2 = 17.5 h, Eß+mean = 1140 keV (20.3%)]. Image-based absorbed dose estimates were compared with those obtained from the extrapolation to 152Tb of a classical biodistribution experiment using the same antibody fragment labeled with 111In. 152Tb was produced by proton-induced spallation in a tantalum target, followed by mass separation and cation exchange chromatography. The endosialin-targeting scFv78-Fc fusion protein was conjugated with the chelator p-SCN-Bn-CHX-A"-DTPA, followed by labeling with either 152Tb or 111In. Micro-PET images of four immunodeficient female mice bearing RD-ES tumor xenografts were acquired 4, 24, and 48 h after the i.v. injection of 152Tb-CHX-DTPA-scFv78-Fc. After count/activity camera calibration, time-integrated activity coefficients (TIACs) were obtained for the following compartments: heart, lungs, liver, kidneys, intestines, tumor, and whole body, manually segmented on CT. For comparison, radiation dose estimates of 152Tb-CHX-DTPA-scFv78-Fc were extrapolated from mice dissected 4, 24, 48, and 96 h after the injection of 111In-CHX-DTPA-scFv78-Fc (3-5 mice per group). Imaging-derived and biodistribution-derived organ TIACs were used as input in the 25 g mouse model of OLINDA/EXM® 2.0, after appropriate mass rescaling. Tumor absorbed doses were obtained using the OLINDA2 sphere model. Finally, the relative percent difference (RD%) between absorbed doses obtained from imaging and biodistribution were calculated. RESULTS: RD% between microPET-based dosimetry and biodistribution-based dose extrapolations were + 12, - 14, and + 17 for the liver, the kidneys, and the tumors, respectively. Compared to biodistribution, the imaging method significantly overestimates the absorbed doses to the heart and the lungs (+ 89 and + 117% dose difference, respectively). CONCLUSIONS: MicroPET-based dosimetry of 152Tb is feasible, and the comparison with organ harvesting resulted in acceptable dose discrepancies for body districts that can be segmented on CT. These encouraging results warrant additional validation using radiolabeled biomolecules with a different biodistribution pattern.

15.
Front Med (Lausanne) ; 6: 88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31131277

RESUMEN

Ionizing radiation constitutes a health risk to imaging scientists and study animals. Both PET and CT produce ionizing radiation. CT doses in pre-clinical in vivo imaging typically range from 50 to 1,000 mGy and biological effects in mice at this dose range have been previously described. [18F]FDG body doses in mice have been estimated to be in the range of 100 mGy for [18F]FDG. Yearly, the average whole body doses due to handling of activity by PET technologists are reported to be 3-8 mSv. A preclinical PET/CT system is presented with design features which make it suitable for small animal low-dose imaging. The CT subsystem uses a X-source power that is optimized for small animal imaging. The system design incorporates a spatial beam shaper coupled with a highly sensitive flat-panel detector and very fast acquisition (<10 s) which allows for whole body scans with doses as low as 3 mGy. The mouse total-body PET subsystem uses a detector architecture based on continuous crystals, coupled to SiPM arrays and a readout based in rows and columns. The PET field of view is 150 mm axial and 80 mm transaxial. The high solid-angle coverage of the sample and the use of continuous crystals achieve a sensitivity of 9% (NEMA) that can be leveraged for use of low tracer doses and/or performing rapid scans. The low-dose imaging capabilities of the total-body PET subsystem were tested with NEMA phantoms, in tumor models, a mouse bone metabolism scan and a rat heart dynamic scan. The CT imaging capabilities were tested in mice and in a low contrast phantom. The PET low-dose phantom and animal experiments provide evidence that image quality suitable for preclinical PET studies is achieved. Furthermore, CT image contrast using low dose scan settings was suitable as a reference for PET scans. Total-body mouse PET/CT studies could be completed with total doses of <10 mGy.

16.
EJNMMI Res ; 7(1): 43, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28523582

RESUMEN

BACKGROUND: Integrin-targeting radiopharmaceuticals have potential broad applications, spanning from cancer theranostics to cardiovascular diseases. We have previously reported preclinical dosimetry results of 68Ga-NODAGA-RGDyK in mice. This study presents the first human dosimetry of 68Ga-NODAGA-RGDyK in the five consecutive patients included in a clinical imaging protocol of carotid atherosclerotic plaques. Five male patients underwent whole-body time-of-flight (TOF) PET/CT scans 10, 60 and 120 min after tracer injection (200 MBq). Quantification of 68Ga activity concentration was first validated by a phantom study. To be used as input in OLINDA/EXM, time-activity curves were derived from manually drawn regions of interest over the following organs: brain, thyroid, lungs, heart, liver, spleen, stomach, kidneys, red marrow, pancreas, small intestine, colon, urinary bladder and whole body. A separate dosimetric analysis was performed for the choroid plexuses. Female dosimetry was extrapolated from male data. Effective doses (EDs) were estimated according to both ICRP60 and ICRP103 assuming 30-min and 1-h voiding cycles. RESULTS: The body regions receiving the highest dose were urinary bladder, kidneys and choroid plexuses. For a 30-min voiding cycle, the EDs were 15.7 and 16.5 µSv/MBq according to ICRP60 and ICRP103, respectively. The extrapolation to female dosimetry resulted in organ absorbed doses 17% higher than those of male patients, on average. The 1-h voiding cycle extrapolation resulted in EDs of 19.3 and 19.8 µSv/MBq according to ICRP60 and ICRP103, respectively. A comparison is made with previous mouse dosimetry and with other human studies employing different RGD-based radiopharmaceuticals. CONCLUSIONS: According to ICRP60/ICRP103 recommendations, an injection of 200 MBq 68Ga-NODAGA-RGDyK leads to an ED in man of 3.86/3.92 mSv. For future therapeutic applications, specific attention should be directed to delivered dose to kidneys and potentially also to the choroid plexuses. TRIAL REGISTRATION: Clinical trial.gov, NCT01608516.

17.
Front Med (Lausanne) ; 4: 35, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28424774

RESUMEN

The interest around small-animal cardiac radionuclide imaging is growing as rodent models can be manipulated to allow the simulation of human diseases. In addition to new radiopharmaceuticals testing, often researchers apply well-established probes to animal models, to follow the evolution of the target disease. This reverse translation of standard radiopharmaceuticals to rodent models is complicated by technical shortcomings and by obvious differences between human and rodent cardiac physiology. In addition, radionuclide studies involving small animals are affected by several extrinsic variables, such as the choice of anesthetic. In this paper, we review the major cardiac features that can be studied with classical single-photon and positron-emitting radiopharmaceuticals, namely, cardiac function, perfusion and metabolism, as well as the results and pitfalls of small-animal radionuclide imaging techniques. In addition, we provide a concise guide to the understanding of the most frequently used anesthetics such as ketamine/xylazine, isoflurane, and pentobarbital. We address in particular their mechanisms of action and the potential effects on radionuclide imaging. Indeed, cardiac function, perfusion, and metabolism can all be significantly affected by varying anesthetics and animal handling conditions.

18.
Radiat Res ; 187(5): 562-569, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28323576

RESUMEN

The synthetic peptide TAT-RasGAP317-326 has been shown to potentiate the efficacy of anti-cancer drugs. In this study, we explored the action of TAT-RasGAP317-326 when combined with radiation by investigating its radiosensitizing activity in vitro and in vivo. To investigate the modulation of intrinsic radiosensitivity induced by TAT-RasGAP317-326, clonogenic assays were performed using four human cancer cell lines, HCT116 p53+/+ (ATCC: CCL-247), HCT116 p53-/-, PANC-1 (ATCC: CRL-1469) and HeLa (ATCC: CCL-2), as well as one nontumor cell line, HaCaT (CLS: 300493). Next, to investigate tumor growth delay after irradiation, HCT116 cell lines were selected and xenografted onto nude mice that were then treated with TAT-RasGAP317-326 alone or in combination with radiation or cisplatin. Afterwards, cell cycle and death modulation were investigated by quantification of micronuclei and apoptosis-related protein array. TAT-RasGAP317-326 radiosensitized all four human carcinoma cell lines tested but displayed no effect on normal cells. It also displayed no effect when administered as monotherapy. This radiosensitizing effect was confirmed in vivo in both p53-positive and p53-negative HCT116 xenografts. TAT-RasGAP317-326 combined with radiation enhanced the number of cells in S phase and subsequently delayed cell death, but had almost no effect on major apoptosis-related proteins. TAT-RasGAP317-326 is a radiosensitizing agent that acts on carcinoma cells and its radiosensitizing effect might be mediated, at least in part, by the enhancement of mitotic cell death.


Asunto(s)
Apoptosis/efectos de la radiación , Proteínas Activadoras de GTPasa/administración & dosificación , Mitosis/efectos de la radiación , Neoplasias Experimentales/patología , Neoplasias Experimentales/radioterapia , Fragmentos de Péptidos/administración & dosificación , Tolerancia a Radiación/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Células HCT116 , Células HeLa , Humanos , Mitosis/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Dosificación Radioterapéutica , Resultado del Tratamiento
19.
Rev Med Suisse ; 11(479): 1340-4, 2015 Jun 17.
Artículo en Francés | MEDLINE | ID: mdl-26255495

RESUMEN

CERN-MEDICIS is a facility dedicated to research and development in life science and medical applications. The research platform was inaugurated in October 2014 and will produce an increasing range of innovative isotopes using the proton beam of ISOLDE for fundamental studies in cancer research, for new imaging and therapy protocols in cell and animal models and for preclinical trials, possibly extended to specific early phase clinical studies (phase 0) up to phase I trials. CERN, the University Hospital of Geneva (HUG), the University Hospital of Lausanne (CHUV), the Swiss Institute for Experimental Cancer (ISREC) at Swiss Federal Institutes of Technology (EPFL) that currently support the project will benefit of the initial production that will then be extended to other centers.


Asunto(s)
Laboratorios , Radioisótopos , Humanos , Medicina Nuclear , Suiza
20.
Radiother Oncol ; 116(3): 495-503, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26096848

RESUMEN

BACKGROUND AND PURPOSE: Second mitochondria-derived activator of caspase (SMAC)-mimetics are a new class of targeted drugs that specifically induce apoptotic cancer cell death and block pro-survival signaling by antagonizing selected members of the inhibitor of apoptosis protein (IAP) family. MATERIAL AND METHODS: The present study was designed to investigate the radiosensitizing effect and optimal sequence of administration of the novel SMAC-mimetic Debio 1143 in vitro and in vivo. Apoptosis, alteration of DNA damage repair (DDR), and tumor necrosis factor-alpha (TNF-α) signaling were examined. RESULTS: In vitro, Debio 1143 displayed anti-proliferative activity and enhanced intrinsic radiation sensitivity in 5/6 head and neck squamous cell carcinoma (HNSCC) cell lines in a synergistic manner. In vivo, Debio 1143 dose-dependently radio-sensitized FaDu and SQ20B xenografts, resulting in complete tumor regression in 8/10 FaDu-xenografted mice at the high dose level. At the molecular level, Debio 1143 combined with radiotherapy (RT) induced enhancement of caspase-3 activity, increase in Annexin V-positive cells and karyopyknosis, and increase in TNF-α mRNA levels. Finally, in a neutralization experiment using a TNF-α-blocking antibody and a caspase inhibitor, it was shown that the radiosensitizing effect of Debio 1143 is mediated by caspases and TNF-α. CONCLUSIONS: These results demonstrate that the novel SMAC-mimetic Debio 1143 is a radiosensitizing agent that is worthy of further investigation in clinical trials in combination with radiotherapy.


Asunto(s)
Antineoplásicos/farmacología , Azocinas/farmacología , Compuestos de Bencidrilo/farmacología , Carcinoma de Células Escamosas/terapia , Neoplasias de Cabeza y Cuello/terapia , Fármacos Sensibilizantes a Radiaciones/farmacología , Factor de Necrosis Tumoral alfa/fisiología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis , Caspasa 3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Quimioradioterapia/métodos , Femenino , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/farmacología , Ratones Endogámicos , Proteínas Mitocondriales/farmacología , Trasplante de Neoplasias , Transducción de Señal/efectos de los fármacos , Carcinoma de Células Escamosas de Cabeza y Cuello , Trasplante Heterólogo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...