Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(12): 18412-18421, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367108

RESUMEN

The use of aluminium (Al) salts, particularly alum, in coagulation is a widespread and conventional treatment method for eliminating pollutants, including phosphorus (P) which can cause eutrophication, from wastewater. However, a significant challenge of this process is the substantial amount of sludge generated, necessitating proper disposal. Historically, land disposal has been a common practice, but it poses potential issues for plant life on these lands. Despite the associated drawbacks, sludge contains elevated concentrations of vital plant nutrients like P and nitrogen, presenting an opportunity for beneficial use in agriculture. Given the imminent scarcity of P fertilizers due to the eventual depletion of high-grade P ores, this review explores the potential advantages and challenges of utilizing Al sludge as a P source for plants and proposes measures for its beneficial application. One primary concern with land application of Al sludge is its high levels of soluble Al, known to be toxic to plants, particularly in acidic soils. Another issue arises from the elevated Al concentration is P fixation and subsequently reducing P uptake by plants. To address these issues, soil treatment options such as lime, gypsum, and organic matter can be employed. Additionally, modifying the coagulation process by substituting part of the Al salts with cationic organic polymers proves effective in reducing the Al content of the sludge. The gradual release of P from sludge into the soil over time proves beneficial for plants with extended growth periods.


Asunto(s)
Compuestos de Alumbre , Aguas del Alcantarillado , Aguas Residuales , Fertilizantes , Fósforo , Sales (Química) , Suelo , Plantas
2.
Membranes (Basel) ; 13(8)2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37623797

RESUMEN

Membrane biofouling is the consequence of the deposition of microorganisms on polymer membrane surfaces. Polymeric membranes have garnered more attention for filtering and purifying water because of their ease of handling, low cost, effortless surface modification, and mechanical, chemical, and thermal properties. The sizes of the pores in the membranes enable micro- and nanofiltration, ultrafiltration, and reverse osmosis. Commonly used polymers for water filter membranes are polyvinyl chloride (PVA), polyvinylidene fluoride (PVDF), polyamide (PA), polyethylene glycol (PEG), polyethersulfone (PES), polyimide (PI), polyacrylonitrile (PAN), polyvinyl alcohol (PA), poly (methacrylic acid) (PMAA), polyaniline nanoparticles (PANI), poly (arylene ether ketone) (PAEK), polyvinylidene fluoride polysulfone (PSF), poly (ether imide) (PEI), etc. However, these polymer membranes are often susceptible to biofouling because of inorganic, organic, and microbial fouling, which deteriorates the membranes and minimizes their lives, and increases operating costs. Biofouling infection on polymer membranes is responsible for many chronic diseases in humans. This contamination cannot be eliminated by periodic pre- or post-treatment processes using biocides and other chemicals. For this reason, it is imperative to modify polymer membranes by surface treatments to enhance their efficiency and longevity. The main objective of this manuscript is to discuss application-oriented approaches to control biofouling on polymer membranes using various surface treatment methods, including nanomaterials and fouling characterizations utilizing advanced microscopy and spectroscopy techniques.

3.
Membranes (Basel) ; 13(6)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37367809

RESUMEN

In this article, an extensive examination is provided on the possible uses of membranes and hybrid processes in wastewater treatment. While membrane technologies face certain constraints, such as membrane fouling and scaling, the incomplete elimination of emerging contaminants, elevated expenses, energy usage, and brine disposal, there are approaches that can address these challenges. Methods such as pretreating the feed water, utilizing hybrid membrane systems and hybrid dual-membrane systems, and employing other innovative membrane-based treatment techniques can enhance the efficacy of membrane processes and advance sustainability.

4.
Membranes (Basel) ; 13(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37233547

RESUMEN

Thin-film nanocomposite (TFN) membranes are the third-generation membranes being explored for nanofiltration applications. Incorporating nanofillers in the dense selective polyamide (PA) layer improves the permeability-selectivity trade-off. The mesoporous cellular foam composite Zn-PDA-MCF-5 was used as a hydrophilic filler in this study to prepare TFN membranes. Incorporating the nanomaterial onto the TFN-2 membrane resulted in a decrease in the water contact angle and suppression of the membrane surface roughness. The pure water permeability of 6.40 LMH bar-1 at the optimal loading ratio of 0.25 wt.% obtained was higher than the TFN-0 (4.20 LMH bar-1). The optimal TFN-2 demonstrated a high rejection of small-sized organics (>95% rejection for 2,4-dichlorophenol over five cycles) and salts-Na2SO4 (≈95%) > MgCl2 (≈88%) > NaCl (86%) through size sieving and Donnan exclusion mechanisms. Furthermore, the flux recovery ratio for TFN-2 increased from 78.9 to 94.2% when challenged with a model protein foulant (bovine serum albumin), indicating improved anti-fouling abilities. Overall, these findings provided a concrete step forward in fabricating TFN membranes that are highly suitable for wastewater treatment and desalination applications.

5.
ACS Omega ; 8(18): 16158-16173, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37179646

RESUMEN

Hierarchically porous nitrogen-enriched carbon materials synthesized by polymerization of sucrose and urea (SU) were activated by KOH and H3PO4 (SU-KOH and SU-H3PO4, respectively). Characterization was undertaken and the synthesized materials were tested for their ability to adsorb methylene blue (MB). Scanning electron microscopic images along with the Brunauer-Emmett-Teller (BET) surface area analysis revealed the presence of a hierarchically porous system. X-ray photoelectron spectroscopy (XPS) confirms the surface oxidation of SU upon activation with KOH and H3PO4. The best conditions for removing dyes utilizing both activated adsorbents were determined by varying the pH, contact time, adsorbent dosage, and dye concentration. Adsorption kinetics were evaluated, and the adsorption of MB followed second-order kinetics, suggesting the chemisorption of MB to both SU-KOH and SU-H3PO4. Times taken to reach the equilibrium by SU-KOH and SU-H3PO4 were 180 and 30 min, respectively. The adsorption isotherm data were fitted to the Langmuir, Freundlich, Temkin, and Dubinin models. Data were best described by the Temkin isotherm model for SU-KOH and the Freundlich isotherm model for SU-H3PO4. Thermodynamics of the adsorption of MB to the adsorbent was determined by varying the temperature in the range of 25-55 °C. Adsorption of MB increased with increasing temperature, suggesting that the adsorption process is endothermic. The highest adsorption capacities of SU-KOH and SU-H3PO4 (1268 and 897 mg g-1, respectively) were obtained at 55 °C. Synthesized adsorbents were effective in removing MB for five cycles with some loss in activity. The results of this study show that SU activated by KOH and H3PO4 are environmentally benign, favorable, and effective adsorbents for MB adsorption.

6.
Molecules ; 28(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37049917

RESUMEN

Fabrication of chitosan and ilmenite sand-based novel photocatalysts through the catalytic graphitization of chitosan is reported. Nanocomposites consisted of TiO2, Fe2O3 and Fe nanoparticles dispersed on a nitrogen-doped graphitic carbon framework. The surface area, pore volume and macropore structure of the carbon matrix is disturbed by the heterogeneously distributed nanoparticles. The extent of graphitization expanded with increasing metal loading as indicated by variation in the ID/IG ratio. The nanomaterial's surface consists of Fe3+ and Ti4+, and graphitic, pyridinic and pyrrolic nitrogen were found in the carbon matrix. The band gap values of the composites varied in the 2.06-2.26 eV range. The photocatalytic activity of the synthesized nanomaterials was determined, and the highest rate constant for the photodegradation of methylene blue under sunlight was 4.4 × 10-3 min-1, which resulted with 10 mg/L MB and 25 mg of the best-performing catalyst. The rate constant rose with increasing concentrations of persulfate added to the medium. The rate constant greatly diminished with the addition of isopropyl alcohol as it scavenged hydroxyl radicals. The presence of co-pollutants including Pb2+, rhodamine B, PO43- and Cl- curtailed the rate of reaction. The activity reduced with an increasing number of uses of the catalyst.

7.
Chemosphere ; 328: 138560, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37004822

RESUMEN

Bisphenols (bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF)) are widely used as additives in numerous industries and therefore they are ubiquitously present throughout the world's natural environment including water. A review of the literature is presented on their sources, pathways of entry into the environment, and especially aquatic contexts, their toxicity to humans and other organisms and the technologies for removing them from water. The treatment technologies used are mostly adsorption, biodegradation, advanced oxidation, coagulation, and membrane separation processes. In the adsorption process, several adsorbents, especially carbon-based materials, have been tested. The biodegradation process has been deployed and it involves a variety of micro-organisms. Advanced oxidation processes (AOPs) such as UV/O3-based, catalysis relevant AOPs, electrochemical AOPs and physical AOPs have been employed. Both the biodegradation process and AOPs generate by-products which may be toxic. These by-products need to be subsequently removed using other treatment processes. Effectiveness of the membrane process varies depending on the porosity, charge, hydrophobicity, and other properties of the membrane. The problems and limitations of each treatment technique are discussed and methods to overcome them are presented. Suggestions are articulated to use a combination of processes to improve the removal efficiencies.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Humanos , Contaminantes Químicos del Agua/análisis , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/análisis , Oxidación-Reducción , Biodegradación Ambiental
8.
Materials (Basel) ; 16(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903188

RESUMEN

Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.

9.
Membranes (Basel) ; 13(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837638

RESUMEN

Reverse osmosis concentrate (ROC) produced as the by-product of the reverse osmosis process consists of a high load of organics (macro and micro) that potentially cause eco-toxicological effects in the environment. Previous studies focused on the removal of such compounds using oxidation, adsorption, and membrane-based treatments. However, these methods were not always efficient and formed toxic by-products. The impact of ion-exchange resin (IEX) (Purolite®A502PS) was studied in a micro-filtration-IEX hybrid system to remove organics from ROC for varying doses of Purolite® A502PS (5-20 g/L) at a flux of 36 L/m2h. The purolite particles in the membrane reactor reduced membrane fouling, evidenced by the reduction of transmembrane pressure (TMP), by pre-adsorbing the organics, and by mechanically scouring the membrane. The dissolved organic carbon was reduced by 45-60%, out of which 48-81% of the hydrophilics were removed followed by the hydrophobics and low molecular weight compounds (LMWs). This was based on fluorescence excitation-emission matrix and liquid chromatography-organic carbon detection. Negatively charged and hydrophobic organic compounds were preferentially removed by resin. Long-term experiments with different daily replacements of resin are suggested to minimize the resin requirements and energy consumption.

10.
Membranes (Basel) ; 13(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36837661

RESUMEN

When discharged into wastewater, pharmaceuticals and personal care products (PPCPs) become microorganic contaminants and are among the largest groups of emerging pollutants. Human, animal, and aquatic organisms' exposures to PPCPs have linked them to an array of carcinogenic, mutagenic, and reproductive toxicity risks. For this reason, various methods are being implemented to remove them from water bodies. This report critically reviews these methods and suggests improvements to removal strategies. Biological, physical, and chemical methods such as biological degradation, adsorption, membrane filtration, and advanced electrical and chemical oxidation are the common methods used. However, these processes were not integrated into most studies to take advantage of the different mechanisms specific to each process and are synergistic in the removal of the PPCPs that differ in their physical and chemical characteristics (charge, molecular weight, hydrophobicity, hydrogen bonding, structure). In the review articles published to date, very little information is available on the use of such integrated methods for removing PPCPs. This report attempts to fill this gap with our knowledge.

11.
Environ Sci Pollut Res Int ; 30(15): 42738-42752, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36166127

RESUMEN

Clean water shortage is a major global problem due to escalating demand resulting from increasing human population growth and industrial activities, decreasing freshwater resources and persistent droughts. Recycling and reuse of wastewater by adopting efficient reclamation techniques can help solve this problem. However, wastewater contains a wide range of pollutants, which require removal before it may be reused. Adsorption and membrane processes are two successful treatments used to remove most of these pollutants. Their efficiency increases when these processes are integrated as observed, for example in a submerged membrane adsorption hybrid system (SMAHS). It uses coarse air bubbling/sparging to produce local shear which minimises reversible membrane fouling, improves performance and extends the life of the membrane. Additionally, the adsorbent acts as a buoyant media that produces an extra shearing effect on the membrane surface, reduces membrane resistance and increases flux. In addition, it adsorbs the organics that would otherwise deposit on and cause fouling of the membrane. The use of activated carbon (AC) adsorbent in SMAHS is very effective in removing most pollutants including natural organic matter (NOM) and organic micropollutants (OMPs) from wastewaters and membrane concentrate wastes, the latter being a serious problem in practical applications of the reverse osmosis process. However, certain NOM fractions and OMPs (i.e. hydrophilic and negatively charged ones) are not efficiently removed by AC. Other adsorbents need to be explored for their effective removal.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Agua , Purificación del Agua/métodos , Adsorción , Contaminantes Químicos del Agua/análisis , Carbón Orgánico
12.
Polymers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36559716

RESUMEN

Membrane distillation (MD) is an emerging technology for water recovery from hypersaline wastewater. Membrane scaling and wetting are the drawbacks that prevent the widespread implementation of the MD process. In this study, coaxially electrospun polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP) nanofibrous membranes were fabricated with re-entrant architecture and enhanced hydrophobicity/omniphobicity. The multiscale roughness was constructed by incorporating Al2O3 nanoparticles and 1H, 1H, 2H, 2H Perfluorodecyltriethoxysilane in the sheath solution. High resolution transmission electron microscopy (HR-TEM) could confirm the formation of the core-sheath nanofibrous membranes, which exhibited a water contact angle of ~142.5° and enhanced surface roughness. The membrane displayed a stable vapor flux of 12 L.m−2.h−1 (LMH) for a 7.0 wt.% NaCl feed solution and no loss in permeate quality or quantity. Long-term water recovery from 10.5 wt.% NaCl feed solution was determined to be 8−10 LMH with >99.9% NaCl rejection for up to 5 cycles of operation (60 h). The membranes exhibited excellent resistance to wetting even above the critical micelle concentration (CMC) for surfactants in the order sodium dodecyl sulphate (SDS) (16 mM) > cetyltrimethylammonium bromide (CTAB) (1.5 mM) > Tween 80 (0.10 mM). The presence of salts further deteriorated membrane performance for SDS (12 mM) and Tween-80 (0.05 mM). These coaxial electrospun nanofibrous membranes are robust and can be explored for long-term applications.

13.
ACS Omega ; 7(29): 25403-25421, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35910103

RESUMEN

Dyes in wastewater are a serious problem that needs to be resolved. Adsorption coupled photocatalysis is an innovative technique used to remove dyes from contaminated water. Novel composites of TiO2-Fe3C-Fe-Fe3O4 dispersed on graphitic carbon were fabricated using natural ilmenite sand as the source of iron and titanium, and sucrose as the carbon source, which were available at no cost. Synthesized composites were characterized by X-ray diffractometry (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectroscopy (XRF), and diffuse reflectance UV-visible spectroscopy (DRS). Arrangement of nanoribbons of graphitic carbon with respect to the nanomaterials was observed in TEM images, revealing the occurrence of catalytic graphitization. Variations in the intensity ratio (I D/I G), L a and L D, calculated from data obtained from Raman spectroscopy suggested that the level of graphitization increased with an increased loading of the catalysts. SEM images show the immobilization of nanoplate microballs and nanoparticles on the graphitic carbon matrix. The catalyst surface consists of Fe3+ and Ti4+ as the metal species, with V, Mn, and Zr being the main impurities. According to DRS spectra, the synthesized composites absorb light in the visible region efficiently. Fabricated composites effectively adsorb methylene blue via π-π interactions, with the absorption capacities ranging from 21.18 to 45.87 mg/g. They were effective in photodegrading methylene blue under sunlight, where the rate constants varied in the 0.003-0.007 min-1 range. Photogenerated electrons produced by photocatalysts captured by graphitic carbon produce O2 •- radicals, while holes generate OH• radicals, which effectively degrade methylene blue molecules. TiO2-Fe3C-Fe-Fe3O4/graphitic carbon composites inhibited the growth of Escherichia coli (69%) and Staphylococcus aureus (92%) under visible light. Synthesized novel composites using natural materials comprise an ecofriendly, cost-effective solution to remove dyes, and they were effective in inhibiting the growth of Gram-negative and Gram-positive bacteria.

14.
ACS Omega ; 7(31): 27617-27637, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35967057

RESUMEN

High-purity (98.8%, TiO2) rutile nanoparticles were successfully synthesized using ilmenite sand as the initial titanium source. This novel synthesis method was cost-effective and straightforward due to the absence of the traditional gravity, magnetic, electrostatic separation, ball milling, and smelting processes. Synthesized TiO2 nanoparticles were 99% pure. Also, highly corrosive environmentally hazardous acid leachate generated during the leaching process of ilmenite sand was effectively converted into a highly efficient visible light active photocatalyst. The prepared photocatalyst system consists of anatase-TiO2/rutile-TiO2/Fe2O3 (TF-800), rutile-TiO2/Fe2TiO5 (TFTO-800), and anatase-TiO2/Fe3O4 (TF-450) nanocomposites, respectively. The pseudo-second-order adsorption rate of the TF-800 ternary nanocomposite was 0.126 g mg-1 min-1 in dark conditions, and a 0.044 min-1 visible light initial photodegradation rate was exhibited. The TFTO-800 binary nanocomposite adsorbed methylene blue (MB) following pseudo-second-order adsorption (0.224 g mg-1 min-1) in the dark, and the rate constant for photodegradation of MB in visible light was 0.006 min-1. The prepared TF-450 nanocomposite did not display excellent adsorptive and photocatalytic performances throughout the experiment period. The synthesized TF-800 and TFTO-800 were able to degrade 93.1 and 49.8% of a 100 mL, 10 ppm MB dye solution within 180 min, respectively.

15.
Membranes (Basel) ; 12(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36005695

RESUMEN

Submerged microfiltration has a wide range of applications in water and wastewater treatment. Membrane fouling is a major problem, resulting in a severe decline in flux, high energy consumption and frequent membrane cleaning and replacement. The effect of viscosity was not previously studied under controlled conditions to relate it to the air scour. Hence, this study investigated the effect of viscosity on membrane fouling during the operation of submerged membrane microfiltration by adding predetermined amounts of glycerol to a kaolin clay suspension. The addition of glycerol increased the viscosity (from 0.001 to 0.003 Pa·s), resulting in a 3-fold higher transmembrane pressure (TMP) development. An increased airflow (air scour) rate by 3 fold (from 0.6 m3/m2/h to 1.8 m3/m2/h), reduced TMP development by 65%. Membrane fouling quickly developed during the initial stage of microfiltration operation. Therefore, special precautions to control fouling during the early stages of filtration could significantly enhance the operation of the microfilter. Higher airflow caused a reduction in average specific cake resistance, whereas higher viscosity increased this value.

16.
Chemosphere ; 296: 133961, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35157882

RESUMEN

Elevated concentrations of natural organic matter (NOM) and organic micropollutants (OMPs) can contaminate the quality of drinking water, and current water treatment technologies are not always successful in removing all their constituents. Ozonation and adsorption are two advanced processes with different removal mechanisms used to treat NOM and OMPs. Their treatment efficiency depends on the strength and kinetics of adsorption and ozonation (ozone molecule and OH radical (OH•) reaction) of the individual NOM constituents and OMPs. They are individually able to remove many of the NOM fractions and OMPs but not satisfactory in removing the vast array of their components which differ in their physico-chemical characteristics, for example molecular weight, charge, functional groups, aromaticity, and hydrophobicity/hydrophilicity. Significant progress has been made by integrating these processes (ozonation followed by activated carbon (AC) adsorption) but they need further improvement to efficiently target all NOM fractions and the various OMPs. Ozonation transforms the larger NOM molecules into smaller molecular sizes with lower aromaticity and hydrophobicity, subsequently resulting in reduced adsorption. The reduced adsorption of these molecules diminishes their competition against OMP adsorption resulting in increased OMP removal. Adsorption can remove unoxidized pollutants as well as the by-products of ozonation, and some of them are suspected to be human carcinogens. Of the commonly used adsorbents, anion exchange resin and AC, the former has higher affinity towards negatively charged humic fraction and OMPs. Conversely, the latter has higher affinity towards the hydrophobic constituents and smaller sized constituents which diffuse into AC pores and get adsorbed. Biofilm formed by long-term use of AC also contributes to enhanced removal of NOM and OMPs. This paper briefly reviews the currently available literature on removing NOM and OMPs by the ozonation/adsorption integrated process. It also suggests a new method for further increasing the efficiency of this process.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Humanos , Ozono/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
17.
Chemosphere ; 295: 133370, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34973248

RESUMEN

This study developed a layered double hydroxides (Mn/Mg/Fe-LDH) material through a simple co-precipitation method. The Mn/Mg/Fe-LDH oxidized arsenite [As(III)] ions into arsenate [As(V)] anions. The As(III) and oxidized As(V) were then adsorbed onto Mn/Mg/Fe-LDH. The adsorption process of arseniate [As(V)] oxyanions by Mn/Mg/Fe-LDH was simultaneously conducted for comparison. Characterization results indicated that (i) the best Mg/Mn/Fe molar ratio was 1/1/1, (ii) Mn/Mg/Fe-LDH structure was similar to that of hydrotalcite, (iii) Mn/Mg/Fe-LDH possessed a positively charged surface (pHIEP of 10.15) and low Brunauer-Emmett-Teller surface area (SBET = 75.2 m2/g), and (iv) Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ coexisted in Mn/Mg/Fe-LDH. The As(III) adsorption process by Mn/Mg/Fe-LDH was similar to that of As(V) under different experimental conditions (initial solutions pH, coexisting foreign anions, contact times, initial As concentrations, temperatures, and desorbing agents). The Langmuir maximum adsorption capacity of Mn/Mg/Fe-LDH to As(III) (56.1 mg/g) was higher than that of As(V) (32.2 mg/g) at pH 7.0 and 25 °C. X-ray photoelectron spectroscopy was applied to identify the oxidation states of As in laden Mn/Mg/Fe-LDH. The key removal mechanism of As(III) by Mn/Mg/Fe-LDH was oxidation-coupled adsorption, and that of As(V) was reduction-coupled adsorption. The As(V) mechanism adsorption mainly involved: (1) the inner-sphere and outer-sphere complexation with OH groups of Mn/Mg/Fe-LDH and (2) anion exchange with host anions (NO3-) in its interlayer. The primary mechanism adsorption of As(III) was the inner-sphere complexation. The redox reactions made Mn/Mg/Fe-LDH lose its original layer structure after adsorbing As(V) or As(III). The adsorption process was highly irreversible. Mn/Mg/Fe-LDH can decontaminate As from real groundwater samples from 45-92 ppb to 0.35-7.9 ppb (using 1.0 g/L). Therefore, Mn/Mg/Fe-LDH has great potential as a material for removing As.


Asunto(s)
Arsenitos , Contaminantes Químicos del Agua , Adsorción , Concentración de Iones de Hidrógeno , Hidróxidos/química , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/química
18.
Environ Sci Pollut Res Int ; 29(12): 16959-16972, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34655380

RESUMEN

Ammonium removal from drinking water to protect human and environmental health is one of the major global concerns. This study evaluates the performance of Purolite C100E, a commercial cation exchange resin, in eliminating ammonium in synthetic and real contaminated groundwater. The results demonstrate that the pH operation range of the resin for better ammonium removal is 3 to 8. Lower ammonium removal at low and high pH occurred due to competition from H+ and loss of ammonium as ammonia gas, respectively. Equilibrium data of ammonium removal fitted both the Langmuir and Freundlich isotherm models with the maximum Langmuir ion exchange capacities for initial ammonium concentrations of 10-200 mg/L and 50-2000 mg/L, reaching 18.37 mg/g and 40.16 mg/g, respectively. The presence of co-ions in the water reduced the ammonium removal efficiencies slightly (< 12%) in the order Mg2+ > Ca2+ > K+. The higher affinity of ammonium to adsorbent is due to its lower hydrated ionic radius and H-bonding. The maximum exchange capacity in the fluidized bed studies of the original Purolite C100E (bed height 27 cm, resin weight 75 g, initial ammonium concentration 17.4 mg/L, filtration velocity 0.5 m/h) was 10.48 mg/g. It progressively reduced slightly after three regeneration cycles to 8.79 mg/g. The column breakthrough data satisfactorily fitted the Thomas model. A household filter cartridge packed with 4 kg Purolite C100E (80 cm height) and operated at a filtration velocity of 1.9 m/h in Vietnam successfully reduced the initial 6 mg NH4+/L in groundwater (after sand filter pre-treatment) to well below the Vietnam drinking water standard (3 mg/L-QCVN 01:2009/BYT) continuously for 1 week, suggesting that such a filter can be adopted in rural areas to successfully remove ammonium from groundwater.


Asunto(s)
Compuestos de Amonio , Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Humanos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
19.
Chemosphere ; 286(Pt 2): 131729, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34388871

RESUMEN

In this study, a 1000 L/d capacity one-off on-site wastewater treatment system was operated for over a year as a pilot alternative to the conventional on-site treatment as currently used in urban Bhutan. An up-flow anaerobic sludge blanket (UASB) was used for blackwater treatment (to replace "septic tank followed by an anaerobic biofilter (ABF) (to replace soak pits) for the treatment of a mixture of greywater and UASB effluent. Shredded waste plastic bottles were used as the novel biofilter media in the ABF. During a yearlong operation, the pilot system produced a final treated effluent from ABF with average BOD5 28 mg/L, COD 38 mg/L, TSS 85 mg/L and 5 log units of Escherichia coli. These effluents met three out of four of the national effluent discharge limits of Bhutan, but unsuccessful to meet the Escherichia coli standard over a yearlong operation. Further, process optimisation may enable more significant Escherichia coli removal. An economic analysis indicates that the total unit cost (capital and operating expenditures) of this alternative wastewater treatment system for more than 50 users range between USD 0.27-0.37/person/month comparable to USD 0.29-0.42/person/month for the current predominant on-site system, i.e., "septic tanks". This pilot study, therefore, indicates that this wastewater treatment system using shredded waste plastic biofilter media has high potential to replace the current conventional treatment, i.e., "septic tanks", which are often overloaded with greywater and discharging effluents which does not meet the national standards.


Asunto(s)
Aguas Residuales , Purificación del Agua , Anaerobiosis , Bután , Reactores Biológicos , Humanos , Proyectos Piloto , Plásticos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
20.
Materials (Basel) ; 16(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36614479

RESUMEN

Hematite (α-Fe2O3) and pseudobrookite (Fe2TiO5) suffer from poor charge transport and a high recombination effect under visible light irradiation. This study investigates the design and production of a 2D graphene-like r-GO/GO coupled α-Fe2O3/Fe2TiO5 heterojunction composite with better charge separation. It uses a simple sonochemical and hydrothermal approach followed by L-ascorbic acid chemical reduction pathway. The advantageous band offset of the α-Fe2O3/Fe2TiO5 (TF) nanocomposite between α-Fe2O3 and Fe2TiO5 forms a Type-II heterojunction at the Fe2O3/Fe2TiO5 interface, which efficiently promotes electron-hole separation. Importantly, very corrosive acid leachate resulting from the hydrochloric acid leaching of ilmenite sand, was successfully exploited to fabricate α-Fe2O3/Fe2TiO5 heterojunction. In this paper, a straightforward synthesis strategy was employed to create 2D graphene-like reduced graphene oxide (r-GO) from Ceylon graphite. The two-step process comprises oxidation of graphite to graphene oxide (GO) using the improved Hummer's method, followed by controlled reduction of GO to r-GO using L-ascorbic acid. Before the reduction of GO to the r-GO, the surface of TF heterojunction was coupled with GO and was allowed for the controlled L-ascorbic acid reduction to yield r-GO/GO/α-Fe2O3/Fe2TiO5 nanocomposite. Under visible light illumination, the photocatalytic performance of the 30% GO/TF loaded composite material greatly improved (1240 Wcm-2). Field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM) examined the morphological characteristics of fabricated composites. X-ray photoelectron spectroscopy (XPS), Raman, X-ray diffraction (XRD), X-ray fluorescence (XRF), and diffuse reflectance spectroscopy (DRS) served to analyze the structural features of the produced composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...