Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 36(26): 7691-7700, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32501009

RESUMEN

We report the functionalization of chalcogenide thin films with biotinylated 12-mer peptides SVSVGMKPSPRP and LLADTTHHRPWT exhibiting a high binding affinity toward inorganic surfaces, on the one hand, and with (3-aminopropyl)triethoxysilane (APTES), on the other hand. The specific biotin moieties were used to bind streptavidin proteins and demonstrate the efficacy of the biofunctionalizated chalcogenide thin films to capture biomolecules. Atomic force microscopy provided high-resolution images of the interfaces, and water contact angle measurements gave insight into the interaction mechanisms. Fourier transform infrared spectroscopy in attenuated total reflection mode provided information about the secondary structure of the bound proteins, thanks to the deconvolution of the amide I band (1700-1600 cm-1). Following adsorption of the biotinylated peptides or APTES immobilization, a homogenous coverage of the biotin layer exhibiting very low roughness was obtained, also rendering more hydrophilic Ge-Se-Te surfaces. Subsequent capture of streptavidin depends on the functionalization approach, permitting more or less an optimal orientation of the biotin to bind streptavidin. The molecular interface layer formed on Ge-Se-Te is crucial also for retaining the native secondary structure of the protein. Altogether, our results demonstrate that both peptides and APTES were appropriate linkers to build a favorable interface on chalcogenide materials to capture proteins, opening hereby promising biosensing applications.

2.
Sensors (Basel) ; 19(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561415

RESUMEN

The leaf coverage surface is a key measurement of the spraying process to maximize spray efficiency. To determine leaf coverage surface, the development of optical micro-sensors that, coupled with a multivariate spectral analysis, will be able to measure the volume of the droplets deposited on their surface is proposed. Rib optical waveguides based on Ge-Se-Te chalcogenide films were manufactured and their light transmission was studied as a response to the deposition of demineralized water droplets on their surface. The measurements were performed using a dedicated spectrophotometric bench to record the transmission spectra at the output of the waveguides, before (reference) and after drop deposition, in the wavelength range between 1200 and 2000 nm. The presence of a hollow at 1450 nm in the relative transmission spectra has been recorded. This corresponds to the first overtone of the O-H stretching vibration in water. This result tends to show that the optical intensity decrease observed after droplet deposition is partly due to absorption by water of the light energy carried by the guided mode evanescent field. The probe based on Ge-Se-Te rib optical waveguides is thus sensitive throughout the whole range of volumes studied, i.e., from 0.1 to 2.5 µL. Principal Component Analysis and Partial Least Square as multivariate techniques then allowed the analysis of the statistics of the measurements and the predictive character of the transmission spectra. It confirmed the sensitivity of the measurement system to the water absorption, and the predictive model allowed the prediction of droplet volumes on an independent set of measurements, with a correlation of 66.5% and a precision of 0.39 µL.

3.
Opt Lett ; 36(15): 2922-4, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21808359

RESUMEN

The feasibility of all-telluride integrated optics devices based on waveguides presenting a single-mode behavior in the spectral range (10-20 µm) is demonstrated. These waveguides are constituted of a several micrometer thick Te(82)Ge(18) film deposited onto a Te(75)Ge(15)Ga(10) bulk glass substrate by thermal coevaporation and further etched by reactive ion etching under the CHF(3)/O(2)/Ar atmosphere. The obtained structures were proven to behave as channel waveguides with a good single-mode transmission over the whole spectral range. These results allowed validating our technological solution for the fabrication of integrated optics modal filters for spatial interferometry.


Asunto(s)
Rayos Infrarrojos , Dispositivos Ópticos , Telurio/química , Impedancia Eléctrica , Vidrio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...