Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
CBE Life Sci Educ ; 19(1): ar4, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32004100

RESUMEN

Recent studies demonstrate that significant learning gains can be achieved when instructors take intentional steps to address the affective components of learning. While such efforts enhance the outcomes of all students, they are particularly beneficial for students from underrepresented groups and can reduce performance gaps. In the present study, we examined whether intentional efforts to address the affective domain of learning (through growth mindset messaging) can synergize with best practices for addressing the cognitive domain (via active-learning strategies) to enhance academic outcomes in biology courses. We compared the impact of this two-pronged approach (known as dual domain pedagogy, or DDP) with that of two other pedagogies (lecture only or active learning only). Our results demonstrate that DDP is a powerful tool for narrowing performance gaps. DDP, but not active learning, eliminated the performance gap observed between Black and white students in response to lecture. While a significant gap between white and Latin@ students was observed in response to active learning (but not lecture), this gap was reduced by DDP. These findings demonstrate that DDP is an effective approach for promoting a more equitable classroom and can foster learning outcomes that supersede those conferred by active learning alone.


Asunto(s)
Biología , Evaluación Educacional , Aprendizaje Basado en Problemas , Biología/educación , Humanos , Estudiantes
2.
BMC Res Notes ; 11(1): 422, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29970190

RESUMEN

OBJECTIVE: Response-validated multiple-choice assessments are used in college courses to assess student learning gains. The ability of a test to accurately reflect student learning gains is highly dependent on the students' effort. Within our institution, lackluster student effort is common on response-validated multiple-choice concept assessments that are not included as a portion of the semester grade but are used to inform curricular changes. Thus, we set out to determine whether increasing testing stakes by assigning a grade on student performance had an effect on student score and self-reported effort. The Test of Scientific Literacy Skills (TOSLS) is a response-validated multiple-choice assessment used to measure scientific literacy in undergraduates. We administered the TOSLS to students enrolled in a general education Biology course, both during the first 2 weeks (pretest) and the last 2 weeks (posttest) of the course. RESULTS: Self-reported effort and TOSLS performance were significantly correlated in the ungraded cohort. This relationship did not exist in the graded sections. Our data indicate that assigning a low-stakes grade has no significant effect on mean student performance or self-reported effort on the TOSLS within our general education course.


Asunto(s)
Evaluación Educacional , Alfabetización , Estudiantes , Escolaridad , Femenino , Humanos , Masculino , Universidades
3.
Heliyon ; 4(1): e00501, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29349359

RESUMEN

The rapid increase in bacterial resistance to antibiotics is a global healthcare crisis. Non-antibiotic pharmaceuticals that have attained approval by the United States Food and Drug Administration have the potential to be repurposed as bacterial resistance-modifying agents and therefore could become valuable resources in our battle against antibiotic-resistant microbes. Amoxapine is a tetracyclic antidepressant used in the treatment of major depressive disorder. Here we demonstrate the ability of amoxapine to resensitize methicillin-resistant Staphylococcus aureus strain ATCC 43300 to oxacillin in both agar diffusion and broth microdilution assays. Amoxapine also reduced the bacterial cleavage of nitrocefin in a dose-dependent manner, suggesting that it may exert its adjuvant effects through reduction of beta-lactamase activity.

4.
Exp Physiol ; 102(8): 985-999, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28597936

RESUMEN

NEW FINDINGS: What is the central question of this study? The antidiabetic effects of thiazolidinedione (TZD) drugs may be mediated in part by a molecular interaction with the constituent proteins of the mitochondrial pyruvate carrier complex (MPC1 and MPC2). We examined the ability of a mutant mouse strain expressing an N-terminal truncation of MPC2 (Mpc2Δ16 mice) to respond to TZD treatment. What is the main finding and its importance? The response of Mpc2Δ16 mice to TZD treatment was not significantly different from that of wild-type C57BL6/J control animals, suggesting that the 16 N-terminal amino acids of MPC2 are dispensable for the effects of TZD treatment. Rosiglitazone and pioglitazone are thiazolidinedione (TZD) compounds that have been used clinically as insulin-sensitizing drugs and are generally believed to mediate their effects via activation of the peroxisome proliferator-activated receptor Î³ (PPARγ). Recent work has shown that it is possible to synthesize TZD compounds with potent insulin-sensitizing effects and markedly diminished affinity for PPARγ. Both clinically used TZDs and investigational PPARγ-sparing TZDs, such as MSDC-0602, interact with the mitochondrial pyruvate carrier (MPC) and inhibit its activity. The MPC complex is composed of two proteins, MPC1 and MPC2. Herein, we used mice expressing a hypomorphic MPC2 protein missing 16 amino acids in the N-terminus (Mpc2Δ16 mice) to determine the effects of these residues in mediating the insulin-sensitizing effects of TZDs in diet-induced obese mice. We found that both pioglitazone and MSDC-0602 elicited their beneficial metabolic effects, including improvement in glucose tolerance, attenuation of hepatic steatosis, reduction of adipose tissue inflammation and stimulation of adipocyte browning, in both wild-type and Mpc2Δ16 mice after high-fat diet feeding. In addition, truncation of MPC2 failed to attenuate the interaction between TZDs and the MPC in a bioluminescence resonance energy transfer-based assay or to affect the suppression of pyruvate-stimulated respiration in cells. Collectively, these data suggest that the interaction between TZDs and MPC2 is not affected by loss of the N-terminal 16 amino acids nor are these residues required for the insulin-sensitizing effects of these compounds.


Asunto(s)
Insulina/metabolismo , Mitocondrias/metabolismo , Proproteína Convertasa 2/metabolismo , Acetofenonas/farmacología , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Proteínas de Transporte de Anión , Dieta Alta en Grasa/efectos adversos , Hipoglucemiantes/farmacología , Resistencia a la Insulina/fisiología , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , PPAR gamma/metabolismo , Pioglitazona , Rosiglitazona , Tiazolidinedionas/farmacología
5.
Cell Rep ; 7(6): 2042-2053, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24910426

RESUMEN

Carrier-facilitated pyruvate transport across the inner mitochondrial membrane plays an essential role in anabolic and catabolic intermediary metabolism. Mitochondrial pyruvate carrier 2 (Mpc2) is believed to be a component of the complex that facilitates mitochondrial pyruvate import. Complete MPC2 deficiency resulted in embryonic lethality in mice. However, a second mouse line expressing an N-terminal truncated MPC2 protein (Mpc2(Δ16)) was viable but exhibited a reduced capacity for mitochondrial pyruvate oxidation. Metabolic studies demonstrated exaggerated blood lactate concentrations after pyruvate, glucose, or insulin challenge in Mpc2(Δ16) mice. Additionally, compared with wild-type controls, Mpc2(Δ16) mice exhibited normal insulin sensitivity but elevated blood glucose after bolus pyruvate or glucose injection. This was attributable to reduced glucose-stimulated insulin secretion and was corrected by sulfonylurea KATP channel inhibitor administration. Collectively, these data are consistent with a role for MPC2 in mitochondrial pyruvate import and suggest that Mpc2 deficiency results in defective pancreatic ß cell glucose sensing.


Asunto(s)
Glucosa/farmacología , Insulina/metabolismo , Proteínas de Transporte de Membrana/deficiencia , Animales , Proteínas de Transporte de Anión , Femenino , Glucosa/metabolismo , Secreción de Insulina , Ácido Láctico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Transporte de Membrana Mitocondrial , Transportadores de Ácidos Monocarboxílicos , Tasa de Secreción/efectos de los fármacos
6.
PLoS One ; 8(5): e61551, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23690925

RESUMEN

Thiazolidinedione (TZD) insulin sensitizers have the potential to effectively treat a number of human diseases, however the currently available agents have dose-limiting side effects that are mediated via activation of the transcription factor PPARγ. We have recently shown PPARγ-independent actions of TZD insulin sensitizers, but the molecular target of these molecules remained to be identified. Here we use a photo-catalyzable drug analog probe and mass spectrometry-based proteomics to identify a previously uncharacterized mitochondrial complex that specifically recognizes TZDs. These studies identify two well-conserved proteins previously known as brain protein 44 (BRP44) and BRP44 Like (BRP44L), which recently have been renamed Mpc2 and Mpc1 to signify their function as a mitochondrial pyruvate carrier complex. Knockdown of Mpc1 or Mpc2 in Drosophila melanogaster or pre-incubation with UK5099, an inhibitor of pyruvate transport, blocks the crosslinking of mitochondrial membranes by the TZD probe. Knockdown of these proteins in Drosophila also led to increased hemolymph glucose and blocked drug action. In isolated brown adipose tissue (BAT) cells, MSDC-0602, a PPARγ-sparing TZD, altered the incorporation of (13)C-labeled carbon from glucose into acetyl CoA. These results identify Mpc1 and Mpc2 as components of the mitochondrial target of TZDs (mTOT) and suggest that understanding the modulation of this complex, which appears to regulate pyruvate entry into the mitochondria, may provide a viable target for insulin sensitizing pharmacology.


Asunto(s)
Hipoglucemiantes/farmacología , Insulina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/efectos de los fármacos , Tiazolidinedionas/farmacología , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Secreción de Insulina , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial , Datos de Secuencia Molecular , Transportadores de Ácidos Monocarboxílicos , Homología de Secuencia de Aminoácido
7.
J Biol Chem ; 287(28): 23537-48, 2012 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-22621923

RESUMEN

Currently approved thiazolidinediones (TZDs) are effective insulin-sensitizing drugs that may have efficacy for treatment of a variety of metabolic and inflammatory diseases, but their use is limited by side effects that are mediated through ectopic activation of the peroxisome proliferator-activated receptor γ (PPARγ). Emerging evidence suggests that the potent anti-diabetic efficacy of TZDs can be separated from the ability to serve as ligands for PPARγ. A novel TZD analog (MSDC-0602) with very low affinity for binding and activation of PPARγ was evaluated for its effects on insulin resistance in obese mice. MSDC-0602 treatment markedly improved several measures of multiorgan insulin sensitivity, adipose tissue inflammation, and hepatic metabolic derangements, including suppressing hepatic lipogenesis and gluconeogenesis. These beneficial effects were mediated at least in part via direct actions on hepatocytes and were preserved in hepatocytes from liver-specific PPARγ(-/-) mice, indicating that PPARγ was not required to suppress these pathways. In conclusion, the beneficial pharmacology exhibited by MSDC-0602 on insulin sensitivity suggests that PPARγ-sparing TZDs are effective for treatment of type 2 diabetes with reduced risk of PPARγ-mediated side effects.


Asunto(s)
Resistencia a la Insulina , Obesidad/prevención & control , PPAR gamma/metabolismo , Tiazolidinedionas/farmacología , Células 3T3-L1 , Animales , Unión Competitiva , Células Cultivadas , Femenino , Expresión Génica/efectos de los fármacos , Glucólisis/genética , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Hipoglucemiantes/química , Hipoglucemiantes/metabolismo , Hipoglucemiantes/farmacología , Lipogénesis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Estructura Molecular , Obesidad/genética , Obesidad/metabolismo , PPAR gamma/genética , Pioglitazona , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rosiglitazona , Tiazolidinedionas/química , Tiazolidinedionas/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-24533284

RESUMEN

The current pharmacopeia to treat the lethal human and animal diseases caused by the protozoan parasite Trypanosoma brucei remains limited. The parasite's ability to undergo antigenic variation represents a considerable barrier to vaccine development, making the identification of new drug targets extremely important. Recent studies have demonstrated that fatty acid synthesis is important for growth and virulence of Trypanosoma brucei brucei, suggesting this pathway may have therapeutic potential. The first committed step of fatty acid synthesis is catalyzed by acetyl-CoA carboxylase (ACC), which is a known target of (-)-epigallocatechin-3-gallate (EGCG), an active polyphenol compound found in green tea. EGCG exerts its effects on ACC through activation of AMP-dependent protein kinase, which phosphorylates and inhibits ACC. We found that EGCG inhibited TbACC activity with an EC50 of 37 µM and 55 µM for bloodstream form and procyclic form lysates, respectively. Treatment with 100 µM EGCG induced a 4.7- and 1.7- fold increase in TbACC phosphorylation in bloodstream form and procyclic lysates. EGCG also inhibited the growth of bloodstream and procyclic parasites in culture, with a 48 h EC50 of 33 µM and 27 µM, respectively, which is greater than the EGCG plasma levels typically achievable in humans through oral dosing. Daily intraperitoneal administration of EGCG did not reduce the virulence of an acute mouse model of T. b. brucei infection. These data suggest a reduced potential for EGCG to treat T. brucei infections, but suggest that EGCG may prove to be useful as a tool to probe ACC regulation.

9.
Exp Parasitol ; 130(2): 159-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22119241

RESUMEN

Trypanosoma brucei, a eukaryotic pathogen that causes African sleeping sickness in humans and nagana in cattle, depends on the enzyme acetyl-CoA carboxylase (ACC) for full virulence in mice. ACC produces malonyl-CoA, the two carbon donor for fatty acid synthesis. We assessed the effect of haloxyfop, an aryloxyphenoxypropionate herbicide inhibitor of plastid ACCs in many plants as well as Toxoplasma gondii, on T. brucei ACC activity and growth in culture. Haloxyfop inhibited TbACC in cell lysate (EC(50) 67 µM), despite the presence of an amino acid motif typically associated with resistance. Haloxyfop also reduced growth of bloodstream and procyclic form parasites (EC(50) of 0.8 and 1.2 mM). However, the effect on growth was likely due to off-target effects because haloxyfop treatment had no effect on fatty acid elongation or incorporation into complex lipids in vivo.


Asunto(s)
Acetil-CoA Carboxilasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Piridinas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Trypanosoma brucei brucei/enzimología , Acetil-CoA Carboxilasa/química , Secuencia de Aminoácidos , Ciclohexanonas/farmacología , Dihidropiridinas/farmacología , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Propionatos/farmacología , Quinoxalinas/farmacología , Alineación de Secuencia , Trypanosoma brucei brucei/crecimiento & desarrollo
10.
Mol Microbiol ; 80(1): 117-32, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21306439

RESUMEN

Trypanosoma brucei, the causative agent of human African trypanosomiasis, possesses two fatty acid synthesis pathways: a major de novo synthesis pathway in the ER and a mitochondrial pathway. The 2-carbon donor for both pathways is malonyl-CoA, which is synthesized from acetyl-CoA by Acetyl-CoA carboxylase (ACC). Here, we show that T. brucei ACC shares the same enzyme architecture and moderate ∼ 30% identity with yeast and human ACCs. ACC is cytoplasmic and appears to be distributed throughout the cell in numerous puncta distinct from glycosomes and other organelles. ACC is active in both bloodstream and procyclic forms. Reduction of ACC activity by RNA interference (RNAi) resulted in a stage-specific phenotype. In procyclic forms, ACC RNAi resulted in 50-75% reduction in fatty acid elongation and a 64% reduction in growth in low-lipid media. In bloodstream forms, ACC RNAi resulted in a minor 15% decrease in fatty acid elongation and no growth defect in culture, even in low-lipid media. However, ACC RNAi did attenuate virulence in a mouse model of infection. Thus the requirement for ACC in T. brucei is dependent upon the growth environment in two different life cycle stages.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/crecimiento & desarrollo , Acetil-CoA Carboxilasa/genética , Animales , Northern Blotting , Femenino , Ratones , Interferencia de ARN , Transducción de Señal/genética , Transducción de Señal/fisiología , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA