Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 272: 217-225, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30342426

RESUMEN

A comparison of autotrophic (AD) and heterotrophic (HD) cathodic denitrification in a Microbial Fuel Cell (MFC) was made in this study. Denitrifying microbial consortia were developed from cow manure and soil and acclimatized under AD and HD conditions. The AD MFC supported the power output of 4.45 W m-3 while removing nitrate nitrogen (NO3--N) at the rate of 0.118 kg NO3--N m-3 d-1. Significant power output (3.02 W m-3) and nitrate removal rate (2.06 kg NO3--N m-3 d-1) were achieved in HD MFC. Further, 16S rDNA based community analysis revealed higher diversity in HDMFC. The genus Thauera and Pseudomonas were predominant in ADMFC while genus Klebsiella and Alkaliphilus were abundant in HDMFC. The abundance of the denitrifying genes namely narG, nirS, and nosZ were assessed with the help of quantitative PCR and presence of all the genes in both the conditions ensured the necessary molecular requirements for complete denitrification.


Asunto(s)
Fuentes de Energía Bioeléctrica , Consorcios Microbianos , Animales , Procesos Autotróficos , Reactores Biológicos , Bovinos , Desnitrificación , Técnicas Electroquímicas , Electrodos , Procesos Heterotróficos , Estiércol , Nitratos/metabolismo , Nitrógeno/metabolismo , Óxidos de Nitrógeno/metabolismo , Suelo
2.
Bioresour Technol ; 256: 391-398, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29475147

RESUMEN

In this study, Microbial Fuel Cell (MFC) capable of treating saline starch water was developed. Sodium chloride (NaCl) concentrations ranging from 500 mM to 3000 mM were tested at the anode. Nitrate was used as an electron acceptor at the biocathode. The halophilic bacteria were isolated from Sambhar Lake, India. Results indicated successful removal of starch (1.83 kg/m3-d) and nitrate (0.13 kg/m3-d NO3--N) with concomitant power output of 207.05 mW/m2 at 1000 mM NaCl concentration. An increase in power density from 71.06 mW/m2 to 207.05 mW/m2 (2.92 folds) was observed when NaCl concentration was increased from 500 mM to 1000 mM. A decline in power density was observed when the salt concentrations >1000 mM were used. Concentration of 3000 mM supported power output as well as the highest starch degradation (3.2 kg/m3-d) and amylase activity of 2.26 IU/ml. The halophilic exoelectrogens were isolated and identified. The present study demonstrates the utility of MFC for degrading starch in saline water.


Asunto(s)
Fuentes de Energía Bioeléctrica , Purificación del Agua , Bacterias , Electrodos , India , Lagos , Almidón
3.
Bioresour Technol ; 247: 520-527, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28972905

RESUMEN

In this study, a promising microbial fuel cell (MFC) system has been developed, wherein algae is cultivated in the cathode chamber, algae biomass is harvested and lipids are extracted. The lipid extracted algal (LEA) biomass was then used asan electron donor substrate. The performance of MFCs fed with LEA biomass was compared with that of fruit waste fed MFCs (FP-MFCs), wherein LEA-fed MFC was superior in all aspects. Power density of 2.7Wm-3 was obtained by LEA-fed MFCs which is 145% and 260% higher than FP MFC and control MFC respectively. The volumetric algae productivity of 0.028kgm-3day-1 in cathode chamber was achieved. The system was able to generate 0.0136kWhKg-1CODday-1 of electric energy and 0.0782kWhm-3day-1 of algal oil energy. The proposed system is a net energy producer which does not rely heavily on the external supply of electron donor substrates.


Asunto(s)
Fuentes de Energía Bioeléctrica , Lípidos , Biomasa , Electricidad , Electrodos
4.
Environ Sci Pollut Res Int ; 23(8): 7744-56, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26755171

RESUMEN

Microbial fuel cells (MFCs) are emerging wastewater treatment systems with a proven potential for denitrification. In this study, we have developed a high-rate denitrifying MFC. The anode consisted of cow manure and fruit waste and the cathode consisted of cow manure and soil. The initial chemical oxygen demand (COD)/nitrate nitrogen (NO3 (-)-N) was varied from 2 to 40 at the cathode while keeping the anode ratio fixed at 100. NO3 (-)-N removal rate of 7.1 ± 0.9 kg NO3 (-)-N/m(3) net cathodic compartment (NCC)/day was achieved at cathode COD/NO3 (-)-N ratio 7.31 with the current density of 190 ± 9.1 mA/m(2) and power density of 31.92 ± 4 mW/m(2) of electrode surface area. We achieved an open-circuit voltage (OCV) of 410 ± 20 mV at initial cathodic NO3 (-)-N of 0.345 g/l. The cathode COD/NO3 (-)-N ratio had a significant influence on MFC's OCV and nitrate removal rate. Lower OCV (<150 mV) and NO3 (-)-N removal rates were observed at COD/NO3 (-)-N ratio >12 and <7. Experiments done at different cathode pH values indicated that the optimum pH for denitrification was 7. Under optimized biochemical conditions, nitrate removal rate of 6.5 kg NO3 (-)-N/m(3) net cathodic compartment (NCC)/day and power density of 210 mW/m(2) were achieved in a low resistance MFC. The present study thus demonstrates the utility of MFCs for the treatment of high nitrate wastes.


Asunto(s)
Fuentes de Energía Bioeléctrica , Desnitrificación , Estiércol , Nitrógeno/aislamiento & purificación , Administración de Residuos/métodos , Animales , Análisis de la Demanda Biológica de Oxígeno , Bovinos , Electrodos , Nitratos/química , Óxidos de Nitrógeno , Suelo , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA