Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
PLoS One ; 18(4): e0274042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37022994

RESUMEN

Chinese hamster ovary (CHO) cells are widely used for mass production of therapeutic proteins in the pharmaceutical industry. With the growing need in optimizing the performance of producer CHO cell lines, research on CHO cell line development and bioprocess continues to increase in recent decades. Bibliographic mapping and classification of relevant research studies will be essential for identifying research gaps and trends in literature. To qualitatively and quantitatively understand the CHO literature, we have conducted topic modeling using a CHO bioprocess bibliome manually compiled in 2016, and compared the topics uncovered by the Latent Dirichlet Allocation (LDA) models with the human labels of the CHO bibliome. The results show a significant overlap between the manually selected categories and computationally generated topics, and reveal the machine-generated topic-specific characteristics. To identify relevant CHO bioprocessing papers from new scientific literature, we have developed supervized models using Logistic Regression to identify specific article topics and evaluated the results using three CHO bibliome datasets, Bioprocessing set, Glycosylation set, and Phenotype set. The use of top terms as features supports the explainability of document classification results to yield insights on new CHO bioprocessing papers.


Asunto(s)
Minería de Datos , Cricetinae , Animales , Humanos , Células CHO , Cricetulus , Fenotipo , Glicosilación
2.
Glycobiology ; 33(5): 354-357, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-36799723

RESUMEN

Recent technological advances in glycobiology have resulted in a large influx of data and the publication of many papers describing discoveries in glycoscience. However, the terms used in describing glycan structural features are not standardized, making it difficult to harmonize data across biomolecular databases, hampering the harvesting of information across studies and hindering text mining and curation efforts. To address this shortcoming, the Glycan Structure Dictionary has been developed as a reference dictionary to provide a standardized list of widely used glycan terms that can help in the curation and mapping of glycan structures described in publications. Currently, the dictionary has 190 glycan structure terms with 297 synonyms linked to 3,332 publications. For a term to be included in the dictionary, it must be present in at least 2 peer-reviewed publications. Synonyms, annotations, and cross-references to GlyTouCan, GlycoMotif, and other relevant databases and resources are also provided when available. The purpose of this effort is to facilitate biocuration, assist in the development of text mining tools, improve the harmonization of search, and browse capabilities in glycoinformatics resources and help to map glycan structures to function and disease. It is also expected that authors will use these terms to describe glycan structures in their manuscripts over time. A mechanism is also provided for researchers to submit terms for potential incorporation. The dictionary is available at https://wiki.glygen.org/Glycan_structure_dictionary.


Asunto(s)
Minería de Datos , Polisacáridos , Minería de Datos/métodos , Bases de Datos Factuales , Polisacáridos/química , Glicómica/métodos
3.
BMC Bioinformatics ; 23(1): 120, 2022 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379166

RESUMEN

BACKGROUND: Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning. RESULTS: The experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets. CONCLUSIONS: The extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.


Asunto(s)
Investigación Biomédica , Minería de Datos , Investigación Biomédica/métodos , Minería de Datos/métodos , Suministros de Energía Eléctrica , Procesamiento de Lenguaje Natural , Publicaciones
4.
Database (Oxford) ; 20212021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34048547

RESUMEN

microRNAs (miRNAs) are essential gene regulators, and their dysregulation often leads to diseases. Easy access to miRNA information is crucial for interpreting generated experimental data, connecting facts across publications and developing new hypotheses built on previous knowledge. Here, we present extracting miRNA Information from Text (emiRIT), a text-miningbased resource, which presents miRNA information mined from the literature through a user-friendly interface. We collected 149 ,233 miRNA -PubMed ID pairs from Medline between January 1997 and May 2020. emiRIT currently contains 'miRNA -gene regulation' (69 ,152 relations), 'miRNA disease (cancer)' (12 ,300 relations), 'miRNA -biological process and pathways' (23, 390 relations) and circulatory 'miRNAs in extracellular locations' (3782 relations). Biological entities and their relation to miRNAs were extracted from Medline abstracts using publicly available and in-house developed text-mining tools, and the entities were normalized to facilitate querying and integration. We built a database and an interface to store and access the integrated data, respectively. We provide an up-to-date and user-friendly resource to facilitate access to comprehensive miRNA information from the literature on a large scale, enabling users to navigate through different roles of miRNA and examine them in a context specific to their information needs. To assess our resource's information coverage, we have conducted two case studies focusing on the target and differential expression information of miRNAs in the context of cancer and a third case study to assess the usage of emiRIT in the curation of miRNA information. Database URL: https://research.bioinformatics.udel.edu/emirit/.


Asunto(s)
Minería de Datos , MicroARNs , Bases de Datos Factuales , MEDLINE , MicroARNs/genética , PubMed
5.
JCO Clin Cancer Inform ; 4: 210-220, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32142370

RESUMEN

PURPOSE: The purpose of OncoMX1 knowledgebase development was to integrate cancer biomarker and relevant data types into a meta-portal, enabling the research of cancer biomarkers side by side with other pertinent multidimensional data types. METHODS: Cancer mutation, cancer differential expression, cancer expression specificity, healthy gene expression from human and mouse, literature mining for cancer mutation and cancer expression, and biomarker data were integrated, unified by relevant biomedical ontologies, and subjected to rule-based automated quality control before ingestion into the database. RESULTS: OncoMX provides integrated data encompassing more than 1,000 unique biomarker entries (939 from the Early Detection Research Network [EDRN] and 96 from the US Food and Drug Administration) mapped to 20,576 genes that have either mutation or differential expression in cancer. Sentences reporting mutation or differential expression in cancer were extracted from more than 40,000 publications, and healthy gene expression data with samples mapped to organs are available for both human genes and their mouse orthologs. CONCLUSION: OncoMX has prioritized user feedback as a means of guiding development priorities. By mapping to and integrating data from several cancer genomics resources, it is hoped that OncoMX will foster a dynamic engagement between bioinformaticians and cancer biomarker researchers. This engagement should culminate in a community resource that substantially improves the ability and efficiency of exploring cancer biomarker data and related multidimensional data.


Asunto(s)
Biomarcadores de Tumor/análisis , Biología Computacional/métodos , Minería de Datos/métodos , Bases de Datos Genéticas/normas , Bases del Conocimiento , Neoplasias/diagnóstico , Programas Informáticos , Animales , Ontologías Biológicas , Humanos , Ratones , Neoplasias/terapia , Interfaz Usuario-Computador
6.
PLoS One ; 14(7): e0216913, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31361753

RESUMEN

Significant progress has been made in applying deep learning on natural language processing tasks recently. However, deep learning models typically require a large amount of annotated training data while often only small labeled datasets are available for many natural language processing tasks in biomedical literature. Building large-size datasets for deep learning is expensive since it involves considerable human effort and usually requires domain expertise in specialized fields. In this work, we consider augmenting manually annotated data with large amounts of data using distant supervision. However, data obtained by distant supervision is often noisy, we first apply some heuristics to remove some of the incorrect annotations. Then using methods inspired from transfer learning, we show that the resulting models outperform models trained on the original manually annotated sets.


Asunto(s)
Curaduría de Datos , Minería de Datos , Aprendizaje Profundo , Modelos Teóricos , Procesamiento de Lenguaje Natural , Humanos
7.
Database (Oxford) ; 20182018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30576489

RESUMEN

Numerous efforts have been made for developing text-mining tools to extract information from biomedical text automatically. They have assisted in many biological tasks, such as database curation and hypothesis generation. Text-mining tools are usually different from each other in terms of programming language, system dependency and input/output format. There are few previous works that concern the integration of different text-mining tools and their results from large-scale text processing. In this paper, we describe the iTextMine system with an automated workflow to run multiple text-mining tools on large-scale text for knowledge extraction. We employ parallel processing with dockerized text-mining tools with a standardized JSON output format and implement a text alignment algorithm to solve the text discrepancy for result integration. iTextMine presently integrates four relation extraction tools, which have been used to process all the Medline abstracts and PMC open access full-length articles. The website allows users to browse the text evidence and view integrated results for knowledge discovery through a network view. We demonstrate the utilities of iTextMine with two use cases involving the gene PTEN and breast cancer and the gene SATB1.


Asunto(s)
Indización y Redacción de Resúmenes/métodos , Minería de Datos/métodos , Publicaciones , Programas Informáticos , Algoritmos
8.
BMC Med Inform Decis Mak ; 18(Suppl 5): 119, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30526566

RESUMEN

BACKGROUND: The Gene Ontology (GO) is a resource that supplies information about gene product function using ontologies to represent biological knowledge. These ontologies cover three domains: Cellular Component (CC), Molecular Function (MF), and Biological Process (BP). GO annotation is a process which assigns gene functional information using GO terms to relevant genes in the literature. It is a common task among the Model Organism Database (MOD) groups. Manual GO annotation relies on human curators assigning gene functional information using GO terms by reading the biomedical literature. This process is very time-consuming and labor-intensive. As a result, many MODs can afford to curate only a fraction of relevant articles. METHODS: GO terms from the CC domain can be essentially divided into two sub-hierarchies: subcellular location terms, and protein complex terms. We cast the task of gene annotation using GO terms from the CC domain as relation extraction between gene and other entities: (1) extract cases where a protein is found to be in a subcellular location, and (2) extract cases where a protein is a subunit of a protein complex. For each relation extraction task, we use an approach based on triggers and syntactic dependencies to extract the desired relations among entities. RESULTS: We tested our approach on the BC4GO test set, a publicly available corpus for GO annotation. Our approach obtains a F1-score of 71%, a precision of 91% and a recall of 58% for predicting GO terms from CC Domain for given genes. CONCLUSIONS: We have described a novel approach of treating gene annotation with GO terms from CC domain as two relation extraction subtasks. Evaluation results show that our approach achieves a F1-score of 71% for predicting GO terms for given genes. Thereby our approach can be used to accelerate the process of GO annotation for the bio-annotators.


Asunto(s)
Biología Computacional , Ontología de Genes , Anotación de Secuencia Molecular , Procesamiento de Lenguaje Natural , Humanos
9.
Database (Oxford) ; 20182018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29860481

RESUMEN

Gene expression levels affect biological processes and play a key role in many diseases. Characterizing expression profiles is useful for clinical research, and diagnostics and prognostics of diseases. There are currently several high-quality databases that capture gene expression information, obtained mostly from large-scale studies, such as microarray and next-generation sequencing technologies, in the context of disease. The scientific literature is another rich source of information on gene expression-disease relationships that not only have been captured from large-scale studies but have also been observed in thousands of small-scale studies. Expression information obtained from literature through manual curation can extend expression databases. While many of the existing databases include information from literature, they are limited by the time-consuming nature of manual curation and have difficulty keeping up with the explosion of publications in the biomedical field. In this work, we describe an automated text-mining tool, Disease-Expression Relation Extraction from Text (DEXTER) to extract information from literature on gene and microRNA expression in the context of disease. One of the motivations in developing DEXTER was to extend the BioXpress database, a cancer-focused gene expression database that includes data derived from large-scale experiments and manual curation of publications. The literature-based portion of BioXpress lags behind significantly compared to expression information obtained from large-scale studies and can benefit from our text-mined results. We have conducted two different evaluations to measure the accuracy of our text-mining tool and achieved average F-scores of 88.51 and 81.81% for the two evaluations, respectively. Also, to demonstrate the ability to extract rich expression information in different disease-related scenarios, we used DEXTER to extract information on differential expression information for 2024 genes in lung cancer, 115 glycosyltransferases in 62 cancers and 826 microRNA in 171 cancers. All extractions using DEXTER are integrated in the literature-based portion of BioXpress.Database URL: http://biotm.cis.udel.edu/DEXTER.


Asunto(s)
Minería de Datos , Bases de Datos Bibliográficas , Bases de Datos Genéticas , Regulación Neoplásica de la Expresión Génica , Glicosiltransferasas , Neoplasias Pulmonares , MicroARNs , Proteínas de Neoplasias , ARN Neoplásico , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroARNs/biosíntesis , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Neoplásico/biosíntesis , ARN Neoplásico/genética
10.
Nucleic Acids Res ; 46(D1): D542-D550, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29145615

RESUMEN

Protein post-translational modifications (PTMs) play a pivotal role in numerous biological processes by modulating regulation of protein function. We have developed iPTMnet (http://proteininformationresource.org/iPTMnet) for PTM knowledge discovery, employing an integrative bioinformatics approach-combining text mining, data mining, and ontological representation to capture rich PTM information, including PTM enzyme-substrate-site relationships, PTM-specific protein-protein interactions (PPIs) and PTM conservation across species. iPTMnet encompasses data from (i) our PTM-focused text mining tools, RLIMS-P and eFIP, which extract phosphorylation information from full-scale mining of PubMed abstracts and full-length articles; (ii) a set of curated databases with experimentally observed PTMs; and iii) Protein Ontology that organizes proteins and PTM proteoforms, enabling their representation, annotation and comparison within and across species. Presently covering eight major PTM types (phosphorylation, ubiquitination, acetylation, methylation, glycosylation, S-nitrosylation, sumoylation and myristoylation), iPTMnet knowledgebase contains more than 654 500 unique PTM sites in over 62 100 proteins, along with more than 1200 PTM enzymes and over 24 300 PTM enzyme-substrate-site relations. The website supports online search, browsing, retrieval and visual analysis for scientific queries. Several examples, including functional interpretation of phosphoproteomic data, demonstrate iPTMnet as a gateway for visual exploration and systematic analysis of PTM networks and conservation, thereby enabling PTM discovery and hypothesis generation.


Asunto(s)
Bases de Datos de Proteínas , Bases del Conocimiento , Procesamiento Proteico-Postraduccional , Animales , Biología Computacional , Minería de Datos , Enzimas/metabolismo , Humanos , Internet , Fosforilación , Mapas de Interacción de Proteínas , Alineación de Secuencia
11.
PLoS One ; 12(12): e0189663, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29261751

RESUMEN

Tumor molecular profiling plays an integral role in identifying genomic anomalies which may help in personalizing cancer treatments, improving patient outcomes and minimizing risks associated with different therapies. However, critical information regarding the evidence of clinical utility of such anomalies is largely buried in biomedical literature. It is becoming prohibitive for biocurators, clinical researchers and oncologists to keep up with the rapidly growing volume and breadth of information, especially those that describe therapeutic implications of biomarkers and therefore relevant for treatment selection. In an effort to improve and speed up the process of manually reviewing and extracting relevant information from literature, we have developed a natural language processing (NLP)-based text mining (TM) system called eGARD (extracting Genomic Anomalies association with Response to Drugs). This system relies on the syntactic nature of sentences coupled with various textual features to extract relations between genomic anomalies and drug response from MEDLINE abstracts. Our system achieved high precision, recall and F-measure of up to 0.95, 0.86 and 0.90, respectively, on annotated evaluation datasets created in-house and obtained externally from PharmGKB. Additionally, the system extracted information that helps determine the confidence level of extraction to support prioritization of curation. Such a system will enable clinical researchers to explore the use of published markers to stratify patients upfront for 'best-fit' therapies and readily generate hypotheses for new clinical trials.


Asunto(s)
Genómica , Procesamiento de Lenguaje Natural , Neoplasias/genética , Minería de Datos , Humanos
12.
Database (Oxford) ; 20172017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29220476

RESUMEN

UniProt Knowledgebase (UniProtKB) is a publicly available database with access to a vast amount of protein sequence and functional information. To widen the scope of the publications associated with a protein entry, UniProt has introduced the computationally mapped additional bibliography section, which includes literature collected from external sources. In this article, we describe a text mining system, eGenPub, which selects articles that are 'about' specific proteins and allows automatic identification of additional bibliography for given UniProt protein entries. Focusing on plant proteins initially, eGenPub utilizes a gene normalization tool called pGenN, and a trained support vector machine model, which achieves a precision of 95.3%, to predict whether an article, based on its abstract, should be linked to a given UniProt entry. We have conducted a full-scale PubMed processing using eGenPub for eight common plant species. Altogether, 9025 articles are identified as relevant bibliography for 4752 UniProt entries, among which 5252 are additional papers not in the existing publication section. These newly computationally mapped additional bibliography via eGenPub is being integrated in the UniProt production pipeline, and can be accessed via the UniProtKB protein entry publication view.


Asunto(s)
Minería de Datos , Bases de Datos Bibliográficas , Bases de Datos de Proteínas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas , Plantas/genética , Plantas/metabolismo
13.
BMC Bioinformatics ; 18(1): 237, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28472919

RESUMEN

BACKGROUND: A major challenge of high throughput transcriptome studies is presenting the data to researchers in an interpretable format. In many cases, the outputs of such studies are gene lists which are then examined for enriched biological concepts. One approach to help the researcher interpret large gene datasets is to associate genes and informative terms (iTerm) that are obtained from the biomedical literature using the eGIFT text-mining system. However, examining large lists of iTerm and gene pairs is a daunting task. RESULTS: We have developed WebGIVI, an interactive web-based visualization tool ( http://raven.anr.udel.edu/webgivi/ ) to explore gene:iTerm pairs. WebGIVI was built via Cytoscape and Data Driven Document JavaScript libraries and can be used to relate genes to iTerms and then visualize gene and iTerm pairs. WebGIVI can accept a gene list that is used to retrieve the gene symbols and corresponding iTerm list. This list can be submitted to visualize the gene iTerm pairs using two distinct methods: a Concept Map or a Cytoscape Network Map. In addition, WebGIVI also supports uploading and visualization of any two-column tab separated data. CONCLUSIONS: WebGIVI provides an interactive and integrated network graph of gene and iTerms that allows filtering, sorting, and grouping, which can aid biologists in developing hypothesis based on the input gene lists. In addition, WebGIVI can visualize hundreds of nodes and generate a high-resolution image that is important for most of research publications. The source code can be freely downloaded at https://github.com/sunliang3361/WebGIVI . The WebGIVI tutorial is available at http://raven.anr.udel.edu/webgivi/tutorial.php .


Asunto(s)
Minería de Datos/métodos , Genes , Genómica/métodos , Programas Informáticos , Internet
14.
Methods Mol Biol ; 1558: 213-232, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28150240

RESUMEN

Post-translational modifications (PTMs) are one of the main contributors to the diversity of proteoforms in the proteomic landscape. In particular, protein phosphorylation represents an essential regulatory mechanism that plays a role in many biological processes. Protein kinases, the enzymes catalyzing this reaction, are key participants in metabolic and signaling pathways. Their activation or inactivation dictate downstream events: what substrates are modified and their subsequent impact (e.g., activation state, localization, protein-protein interactions (PPIs)). The biomedical literature continues to be the main source of evidence for experimental information about protein phosphorylation. Automatic methods to bring together phosphorylation events and phosphorylation-dependent PPIs can help to summarize the current knowledge and to expose hidden connections. In this chapter, we demonstrate two text mining tools, RLIMS-P and eFIP, for the retrieval and extraction of kinase-substrate-site data and phosphorylation-dependent PPIs from the literature. These tools offer several advantages over a literature search in PubMed as their results are specific for phosphorylation. RLIMS-P and eFIP results can be sorted, organized, and viewed in multiple ways to answer relevant biological questions, and the protein mentions are linked to UniProt identifiers.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Fosfoproteínas/metabolismo , Proteínas/metabolismo , Proteómica/métodos , Programas Informáticos , Bases de Datos de Proteínas , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Motor de Búsqueda , Interfaz Usuario-Computador , Navegador Web
15.
Methods Mol Biol ; 1558: 333-353, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28150246

RESUMEN

Protein post-translational modification (PTM) is an essential cellular regulatory mechanism, and disruptions in PTM have been implicated in disease. PTMs are an active area of study in many fields, leading to a wealth of PTM information in the scientific literature. There is a need for user-friendly bioinformatics resources that capture PTM information from the literature and support analyses of PTMs and their functional consequences. This chapter describes the use of iPTMnet ( http://proteininformationresource.org/iPTMnet/ ), a resource that integrates PTM information from text mining, curated databases, and ontologies and provides visualization tools for exploring PTM networks, PTM crosstalk, and PTM conservation across species. We present several PTM-related queries and demonstrate how they can be addressed using iPTMnet.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Procesamiento Proteico-Postraduccional , Programas Informáticos , Navegador Web , Animales , Minería de Datos/métodos , Humanos , Ratones , Fosfotransferasas , Proteínas de Plantas , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas , Ratas , Motor de Búsqueda , Interfaz Usuario-Computador
16.
Artículo en Inglés | MEDLINE | ID: mdl-27589962

RESUMEN

BioC is a simple XML format for text, annotations and relations, and was developed to achieve interoperability for biomedical text processing. Following the success of BioC in BioCreative IV, the BioCreative V BioC track addressed a collaborative task to build an assistant system for BioGRID curation. In this paper, we describe the framework of the collaborative BioC task and discuss our findings based on the user survey. This track consisted of eight subtasks including gene/protein/organism named entity recognition, protein-protein/genetic interaction passage identification and annotation visualization. Using BioC as their data-sharing and communication medium, nine teams, world-wide, participated and contributed either new methods or improvements of existing tools to address different subtasks of the BioC track. Results from different teams were shared in BioC and made available to other teams as they addressed different subtasks of the track. In the end, all submitted runs were merged using a machine learning classifier to produce an optimized output. The biocurator assistant system was evaluated by four BioGRID curators in terms of practical usability. The curators' feedback was overall positive and highlighted the user-friendly design and the convenient gene/protein curation tool based on text mining.Database URL: http://www.biocreative.org/tasks/biocreative-v/track-1-bioc/.


Asunto(s)
Curaduría de Datos/métodos , Minería de Datos/métodos , Procesamiento Automatizado de Datos/métodos , Difusión de la Información/métodos
17.
Artículo en Inglés | MEDLINE | ID: mdl-27170286

RESUMEN

There has been a large growth in the number of biomedical publications that report experimental results. Many of these results concern detection of protein-protein interactions (PPI). In BioCreative V, we participated in the BioC task and developed a PPI system to detect text passages with PPIs in the full-text articles. By adopting the BioC format, the output of the system can be seamlessly added to the biocuration pipeline with little effort required for the system integration. A distinctive feature of our PPI system is that it utilizes extended dependency graph, an intermediate level of representation that attempts to abstract away syntactic variations in text. As a result, we are able to use only a limited set of rules to extract PPI pairs in the sentences, and additional rules to detect additional passages for PPI pairs. For evaluation, we used the 95 articles that were provided for the BioC annotation task. We retrieved the unique PPIs from the BioGRID database for these articles and show that our system achieves a recall of 83.5%. In order to evaluate the detection of passages with PPIs, we further annotated Abstract and Results sections of 20 documents from the dataset and show that an f-value of 80.5% was obtained. To evaluate the generalizability of the system, we also conducted experiments on AIMed, a well-known PPI corpus. We achieved an f-value of 76.1% for sentence detection and an f-value of 64.7% for unique PPI detection.Database URL: http://proteininformationresource.org/iprolink/corpora.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Mapas de Interacción de Proteínas , Semántica , Programas Informáticos
18.
J Biomed Semantics ; 7(1): 9, 2016 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-27216254

RESUMEN

BACKGROUND: MicroRNAs are increasingly being appreciated as critical players in human diseases, and questions concerning the role of microRNAs arise in many areas of biomedical research. There are several manually curated databases of microRNA-disease associations gathered from the biomedical literature; however, it is difficult for curators of these databases to keep up with the explosion of publications in the microRNA-disease field. Moreover, automated literature mining tools that assist manual curation of microRNA-disease associations currently capture only one microRNA property (expression) in the context of one disease (cancer). Thus, there is a clear need to develop more sophisticated automated literature mining tools that capture a variety of microRNA properties and relations in the context of multiple diseases to provide researchers with fast access to the most recent published information and to streamline and accelerate manual curation. METHODS: We have developed miRiaD (microRNAs in association with Disease), a text-mining tool that automatically extracts associations between microRNAs and diseases from the literature. These associations are often not directly linked, and the intermediate relations are often highly informative for the biomedical researcher. Thus, miRiaD extracts the miR-disease pairs together with an explanation for their association. We also developed a procedure that assigns scores to sentences, marking their informativeness, based on the microRNA-disease relation observed within the sentence. RESULTS: miRiaD was applied to the entire Medline corpus, identifying 8301 PMIDs with miR-disease associations. These abstracts and the miR-disease associations are available for browsing at http://biotm.cis.udel.edu/miRiaD . We evaluated the recall and precision of miRiaD with respect to information of high interest to public microRNA-disease database curators (expression and target gene associations), obtaining a recall of 88.46-90.78. When we expanded the evaluation to include sentences with a wide range of microRNA-disease information that may be of interest to biomedical researchers, miRiaD also performed very well with a F-score of 89.4. The informativeness ranking of sentences was evaluated in terms of nDCG (0.977) and correlation metrics (0.678-0.727) when compared to an annotator's ranked list. CONCLUSIONS: miRiaD, a high performance system that can capture a wide variety of microRNA-disease related information, extends beyond the scope of existing microRNA-disease resources. It can be incorporated into manual curation pipelines and serve as a resource for biomedical researchers interested in the role of microRNAs in disease. In our ongoing work we are developing an improved miRiaD web interface that will facilitate complex queries about microRNA-disease relationships, such as "In what diseases does microRNA regulation of apoptosis play a role?" or "Is there overlap in the sets of genes targeted by microRNAs in different types of dementia?"."


Asunto(s)
Ontologías Biológicas , Minería de Datos/métodos , Enfermedad/genética , MicroARNs/genética , Investigación Biomédica , Internet , Procesamiento de Lenguaje Natural , Semántica
19.
PLoS One ; 11(4): e0152725, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27073839

RESUMEN

The number of published articles describing associations between mutations and diseases is increasing at a fast pace. There is a pressing need to gather such mutation-disease associations into public knowledge bases, but manual curation slows down the growth of such databases. We have addressed this problem by developing a text-mining system (DiMeX) to extract mutation to disease associations from publication abstracts. DiMeX consists of a series of natural language processing modules that preprocess input text and apply syntactic and semantic patterns to extract mutation-disease associations. DiMeX achieves high precision and recall with F-scores of 0.88, 0.91 and 0.89 when evaluated on three different datasets for mutation-disease associations. DiMeX includes a separate component that extracts mutation mentions in text and associates them with genes. This component has been also evaluated on different datasets and shown to achieve state-of-the-art performance. The results indicate that our system outperforms the existing mutation-disease association tools, addressing the low precision problems suffered by most approaches. DiMeX was applied on a large set of abstracts from Medline to extract mutation-disease associations, as well as other relevant information including patient/cohort size and population data. The results are stored in a database that can be queried and downloaded at http://biotm.cis.udel.edu/dimex/. We conclude that this high-throughput text-mining approach has the potential to significantly assist researchers and curators to enrich mutation databases.


Asunto(s)
Minería de Datos/métodos , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Mutación , Procesamiento de Lenguaje Natural , Biología Computacional/métodos , Humanos , Bases del Conocimiento
20.
CEUR Workshop Proc ; 17472016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28706471

RESUMEN

The Protein Ontology (PRO) defines protein classes and their interrelationships from the family to the protein form (proteoform) level within and across species. One of the unique contributions of PRO is its representation of post-translationally modified (PTM) proteoforms. However, progress in adding PTM proteoform classes to PRO has been relatively slow due to the extensive manual curation effort required. Here we report an automated pipeline for creation of PTM proteoform classes that leverages two phosphorylation-focused text mining tools (RLIMS-P, which detects mentions of kinases, substrates, and phosphorylation sites, and eFIP, which detects phosphorylation-dependent protein-protein interactions (PPIs)) and our integrated PTM database, iPTMnet. By applying this pipeline, we obtained a set of ~820 substrate-site pairs that are suitable for automated PRO term generation with literature-based evidence attribution. Inclusion of these terms in PRO will increase PRO coverage of species-specific PTM proteoforms by 50%. Many of these new proteoforms also have associated kinase and/or PPI information. Finally, we show a phosphorylation network for the human and mouse peptidyl-prolyl cis-trans isomerase (PIN1/Pin1) derived from our dataset that demonstrates the biological complexity of the information we have extracted. Our approach addresses scalability in PRO curation and will be further expanded to advance PRO representation of phosphorylated proteoforms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...