Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; 22(5): 182-190, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33779052

RESUMEN

PURPOSE: This study aimed to evaluate and compare different system calibration methods from a large cohort of systems to establish a commissioning procedure for surface-guided frameless cranial stereotactic radiosurgery (SRS) with intrafractional motion monitoring and gating. Using optical surface imaging (OSI) to guide non-coplanar SRS treatments, the determination of OSI couch-angle dependency, baseline drift, and gated-delivered-dose equivalency are essential. METHODS: Eleven trained physicists evaluated 17 OSI systems at nine clinical centers within our institution. Three calibration methods were examined, including 1-level (2D), 2-level plate (3D) calibration for both surface image reconstruction and isocenter determination, and cube phantom calibration to assess OSI-megavoltage (MV) isocenter concordance. After each calibration, a couch-angle dependency error was measured as the maximum registration error within the couch rotation range. A head phantom was immobilized on the treatment couch and the isocenter was set in the middle of the brain, marked with the room lasers. An on-site reference image was acquired at couch zero, the facial region of interest (ROI) was defined, and static verification images were captured every 10° for 0°-90° and 360°-270°. The baseline drift was assessed with real-time monitoring of the motionless phantom over 20 min. The gated-delivered-dose equivalency was assessed using the electron portal imaging device and gamma test (1%/1mm) in reference to non-gated delivery. RESULTS: The maximum couch-angle dependency error occurs in longitudinal and lateral directions and is reduced significantly (P < 0.05) from 1-level (1.3 ± 0.4 mm) to 2-level (0.8 ± 0.3 mm) calibration. The MV cube calibration does not further reduce the couch-angle dependency error (0.8 ± 0.2 mm) on average. The baseline drift error plateaus at 0.3 ± 0.1 mm after 10 min. The gated-delivered-dose equivalency has a >98% gamma-test passing rate. CONCLUSION: A commissioning method is recommended using the 3D plate calibration, which is verified by radiation isocenter and validated with couch-angle dependency, baseline drift, and gated-delivered-dose equivalency tests. This method characterizes OSI uncertainties, ensuring motion-monitoring accuracy for SRS treatments.


Asunto(s)
Radiocirugia , Humanos , Posicionamiento del Paciente , Fantasmas de Imagen , Dosificación Radioterapéutica , Cráneo
2.
Artículo en Inglés | MEDLINE | ID: mdl-29899589

RESUMEN

The purpose of this work is to develop a database of 3D scattered radiation dose-rate distributions to estimate the staff dose by location around a C-Arm fluoroscopic system in an interventional procedure room. The primary x-ray beam of a Toshiba Infinix fluoroscopy machine was modeled using EGSnrc Monte Carlo code and the scattered radiation distributions were calculated using 5 × 109 photons per simulation. These 3D distributions were determined over the volume of the room as a function of various parameters such as the beam kVp and beam filter, the size and shape of the field, the angulation of the C-arm, and the phantom size and shape. Two phantom shapes were used in this study: cylindrical and super-ellipses. The results show that shape of the phantom will affect the dose-rate distribution at distances less than 100 cm, with a higher intensity for the super-ellipse. The scatter intensity per entrance air kerma is seen to be approximately proportional to field area and to increase with increasing kVp. The scatter changes proportionally with increases in primary entrance air kerma for factors such as pulse rate, mA and pulse width. This database will allow estimation of the scatter distribution in the procedure room and, when displayed to the staff during a procedure, may facilitate a reduction of occupational dose.

3.
Artículo en Inglés | MEDLINE | ID: mdl-29904230

RESUMEN

The forward-scatter dose distribution generated by the patient table during fluoroscopic interventions and its contribution to the skin dose is studied. The forward-scatter dose distribution to skin generated by a water table-equivalent phantom and the patient table are calculated using EGSnrc Monte-Carlo and Gafchromic film as a function of x-ray field size and beam penetrability. Forward scatter point spread function's (PSFn) were generated with EGSnrc from a 1×1 mm simulated primary pencil beam incident on the water model and patient table. The forward-scatter point spread function normalized to the primary is convolved over the primary-dose distribution to generate scatter-dose distributions. The utility of PSFn to calculate the entrance skin dose distribution using DTS (dose tracking system) software is investigated. The forward-scatter distribution calculations were performed for 2.32 mm, 3.10 mm, 3.84 mm and 4.24 mm Al HVL x-ray beams for 5×5 cm, 9×9 cm, 13.5×13.5 cm sized x-ray fields for water and 3.1 mm Al HVL x-ray beam for 16.5×16.5 cm field for the patient table. The skin dose is determined with DTS by convolution of the scatter dose PSFn's and with Gafchromic film under PMMA "patient-simulating" blocks for uniform and for shaped x-ray fields. The normalized forward-scatter distribution determined using the convolution method for water table-equivalent phantom agreed with that calculated for the full field using EGSnrc within ±6%. The normalized forward-scatter dose distribution calculated for the patient table for a 16.5×16.5 cm FOV, agreed with that determined using film within ±2.4%. For the homogenous PMMA phantom, the skin dose using DTS was calculated within ±2 % of that measured with the film for both uniform and non-uniform x-ray fields. The convolution method provides improved accuracy over using a single forward-scatter value over the entire field and is a faster alternative to performing full-field Monte-Carlo calculations.

4.
Artículo en Inglés | MEDLINE | ID: mdl-29937616

RESUMEN

The purpose of this study was to evaluate the effect of patient head size on radiation dose to radiosensitive organs, such as the eye lens, brain and spinal cord in fluoroscopically guided neuro-interventional procedures and CBCT scans of the head. The Toshiba Infinix C-Arm System was modeled in BEAMnrc/EGSnrc Monte-Carlo code and patient organ and effective doses were calculated in DOSxynrc/EGSnrc for CBCT and interventional procedures. X-ray projections from different angles, CBCT scans, and neuro-interventional procedures were simulated on a computational head phantom for the range of head sizes in the adult population and for different pediatric ages. The difference of left-eye lens dose between the mean head size and the mean ± 1 standard deviation (SD) ranges from 20% to 300% for projection angles of 0° to 90° RAO. The differences for other organs do not vary as much and is only about 10% for the brain. For a LCI-High CBCT protocol, the difference between mean and mean ± 1 SD head size is about 100% for lens dose and only 10% for mean and peak brain dose; the difference between 20 and 3 year-old mean head size is an increase of about 200% for the eye lens dose and only 30% for mean and peak brain dose. Dose for all organs increases with decreasing head size for the same reference point air kerma. These results will allow size-specific dose estimates to be made using software such as our dose tracking system (DTS).

5.
J Med Imaging (Bellingham) ; 4(3): 031210, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28840169

RESUMEN

In some medical-imaging procedures using cone-beam CT (CBCT) and fluoroscopy, only the center of the field of view (FOV) may be needed to be visualized with optimal image quality. To reduce the dose to the patient while maintaining visualization of the entire FOV, a Cu attenuator with a circular aperture for the region of interest (ROI) is used. The potential organ and effective dose reductions of ROI imaging when applied to CBCT and interventional fluoroscopic procedures were determined using EGSnrc Monte Carlo code. The Monte Carlo model was first validated by comparing the surface dose distribution in a solid-water block phantom with measurement by Gafchromic film. The dependence of dose reduction on the ROI attenuator thickness, the opening size of the ROI, the axial beam position, and the location of the different organs for both neuro and thoracic imaging was evaluated. The results showed a reduction in most organ doses of 45% to 70% and in effective dose of 46% to 66% compared to the dose in a CBCT scan and in an interventional procedure without the ROI attenuator. This work provides evidence of a substantial reduction of organ and effective doses when using an ROI attenuator during CBCT and fluoroscopic procedures.

6.
Proc SPIE Int Soc Opt Eng ; 101322017 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-28615791

RESUMEN

X-ray imaging examinations, especially complex interventions, may result in relatively high doses to the patient's skin inducing skin injuries. A method was developed to determine the skin-dose distribution for non-uniform x-ray beams by convolving the backscatter point-spread-function (PSF) with the primary-dose distribution to generate the backscatter distribution that, when added to the primary dose, gives the total-dose distribution. This technique was incorporated in the dose-tracking system (DTS), which provides a real-time color-coded 3D-mapping of skin dose during fluoroscopic procedures. The aim of this work is to investigate the variation of the backscatter PSF with different parameters. A backscatter PSF of a 1-mm x-ray beam was generated by EGSnrc Monte-Carlo code for different x-ray beam energies, different soft-tissue thickness above bone, different bone thickness and different entrance-beam angles, as well as for different locations on the SK-150 anthropomorphic head phantom. The results show a reduction of the peak scatter to primary dose ratio of 48% when X-ray beam voltage is increased from 40 keV to 120 keV. The backscatter dose was reduced when bone was beneath the soft tissue layer and this reduction increased with thinner soft tissue and thicker bone layers. The backscatter factor increased about 21% as the angle of incidence of the beam with the entrance surface decreased from 90° (perpendicular) to 30°. The backscatter PSF differed for different locations on the SK-150 phantom by up to 15%. The results of this study can be used to improve the accuracy of dose calculation when using PSF convolution in the DTS.

7.
Proc SPIE Int Soc Opt Eng ; 101322017 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-28638169

RESUMEN

In some medical-imaging procedures using CBCT and fluoroscopy, it may be needed to visualize only the center of the field-of-view with optimal quality. To reduce the dose to the patient as well as enable increased contrast in the region of interest (ROI) during CBCT and fluoroscopy procedures, a 0.7 mm thick Cu ROI attenuator with a circular aperture 12% of the FOV was used. The aim of this study was to quantify the dose-reduction benefit of ROI imaging during a typical CBCT and interventional fluoroscopy procedures in the head and torso. The Toshiba Infinix C-Arm System was modeled in BEAMnrc/EGSnrc with and without the ROI attenuator. Patient organ and effective doses were calculated in DOSXYZnrc/EGSnrc Monte-Carlo software for CBCT and interventional procedures. We first compared the entrance dose with and without the ROI attenuator on a 20 cm thick solid-water block. Then we simulated a CBCT scan and an interventional fluoroscopy procedure on the head and torso with and without an ROI attenuator. The results showed that the entrance-surface dose reduction in the solid water is about 85.7% outside the ROI opening and 10.5% in the ROI opening. The results showed a reduction in most organ doses of 45%-70% and in effective dose of 46%-66% compared to the dose in a CBCT scan and in an interventional procedure without the ROI attenuator. This work provides evidence of substantial reduction of organ and effective doses when using an ROI attenuator during CBCT and fluoroscopic procedures.

8.
J Med Imaging (Bellingham) ; 4(3): 031203, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28630887

RESUMEN

Radiation backscattered from the patient can contribute substantially to skin dose in fluoroscopically guided interventions (FGIs). The distribution of backscatter is not spatially uniform, and use of a single backscatter factor cannot provide an accurate determination of skin dose. This study evaluates a method to determine the backscatter spatial distribution through convolution of a backscatter-to-primary (BP) point spread function (PSFn). The PSFn is derived for a pencil beam using EGSnrc Monte Carlo software and is convolved with primary distributions using a dose-tracking system. The backscatter distribution calculated using the convolution method is validated with Monte Carlo-derived distributions for three different size "uniform" fields and with XR-QA2 Gafchromic film for nonuniform x-ray fields obtained using region-of-interest (ROI) attenuators and compensation filters, both with homogenous poly-methyl methacrylate and nonhomogenous head phantoms. The BP ratios inside uniform fields were calculated within [Formula: see text] of that determined using EGSnrc. For shaped fields, the BP ratio in the unattenuated ROI was calculated within [Formula: see text] of that measured with film; in the beam-attenuated periphery, agreement was within [Formula: see text], due to the larger uncertainty of the dose-response curve of the film in the low-dose region. This backscatter PSFn convolution method is much faster than performing full-field Monte Carlo calculations and provides improved accuracy in skin dose distribution determination for FGI procedures.

9.
Proc SPIE Int Soc Opt Eng ; 101322017 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-28649154

RESUMEN

Beam shaping devices like ROI attenuators and compensation filters modulate the intensity distribution of the x-ray beam incident on the patient. This results in a spatial variation of skin dose due to the variation of primary radiation and also a variation in backscattered radiation from the patient. To determine the backscatter component, backscatter point spread functions (PSF) are generated using EGS Monte-Carlo software. For this study, PSF's were determined by simulating a 1 mm beam incident on the lateral surface of an anthropomorphic head phantom and a 20 cm thick PMMA block phantom. The backscatter PSF's for the head phantom and PMMA phantom are curve fit with a Lorentzian function after being normalized to the primary dose intensity (PSFn). PSFn is convolved with the primary dose distribution to generate the scatter dose distribution, which is added to the primary to obtain the total dose distribution. The backscatter convolution technique is incorporated in the dose tracking system (DTS), which tracks skin dose during fluoroscopic procedures and provides a color map of the dose distribution on a 3D patient graphic model. A convolution technique is developed for the backscatter dose determination for the non-uniformly spaced graphic-model surface vertices. A Gafchromic film validation was performed for shaped x-ray beams generated with an ROI attenuator and with two compensation filters inserted into the field. The total dose distribution calculated by the backscatter convolution technique closely agreed with that measured with the film.

10.
Proc SPIE Int Soc Opt Eng ; 97832016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28638173

RESUMEN

The aim of this work is to develop a method to calculate lens dose for fluoroscopically-guided neuro-interventional procedures and for CBCT scans of the head. EGSnrc Monte Carlo software is used to determine the dose to the lens of the eye for the projection geometry and exposure parameters used in these procedures. This information is provided by a digital CAN bus on the Toshiba Infinix C-Arm system which is saved in a log file by the real-time skin-dose tracking system (DTS) we previously developed. The x-ray beam spectra on this machine were simulated using BEAMnrc. These spectra were compared to those determined by SpekCalc and validated through measured percent-depth-dose (PDD) curves and half-value-layer (HVL) measurements. We simulated CBCT procedures in DOSXYZnrc for a CTDI head phantom and compared the surface dose distribution with that measured with Gafchromic film, and also for an SK150 head phantom and compared the lens dose with that measured with an ionization chamber. Both methods demonstrated good agreement. Organ dose calculated for a simulated neuro-interventional-procedure using DOSXYZnrc with the Zubal CT voxel phantom agreed within 10% with that calculated by PCXMC code for most organs. To calculate the lens dose in a neuro-interventional procedure, we developed a library of normalized lens dose values for different projection angles and kVp's. The total lens dose is then calculated by summing the values over all beam projections and can be included on the DTS report at the end of the procedure.

11.
Proc SPIE Int Soc Opt Eng ; 97832016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-28649161

RESUMEN

The skin-dose tracking system (DTS) provides a color-coded illustration of the cumulative skin-dose distribution on a closely-matching 3D graphic of the patient during fluoroscopic interventions in real-time for immediate feedback to the interventionist. The skin-dose tracking utility of DTS has been extended to include cone-beam computed tomography (CBCT) of neurointerventions. While the DTS was developed to track the entrance skin dose including backscatter, a significant part of the dose in CBCT is contributed by exit primary radiation and scatter due to the many overlapping projections during the rotational scan. The variation of backscatter inside and outside the collimated beam was measured with radiochromic film and a curve was fit to obtain a scatter spread function that could be applied in the DTS. Likewise, the exit dose distribution was measured with radiochromic film for a single projection and a correction factor was determined as a function of path length through the head. Both of these sources of skin dose are added for every projection in the CBCT scan to obtain a total dose mapping over the patient graphic. Results show the backscatter to follow a sigmoidal falloff near the edge of the beam, extending outside the beam as far as 8 cm. The exit dose measured for a cylindrical CTDI phantom was nearly 10 % of the entrance peak skin dose for the central ray. The dose mapping performed by the DTS for a CBCT scan was compared to that measured with radiochromic film and a CTDI-head phantom with good agreement.

12.
Artículo en Inglés | MEDLINE | ID: mdl-35261425

RESUMEN

The skin dose tracking system (DTS) that we developed provides a color-coded mapping of the cumulative skin dose distribution on a 3D graphic of the patient during fluoroscopic procedures in real time. The DTS has now been modified to also calculate the kerma area product (KAP) and cumulative air kerma (CAK) for fluoroscopic interventions using data obtained in real-time from the digital bus on a Toshiba Infinix system. KAP is the integral of air kerma over the beam area and is typically measured with a large-area transmission ionization chamber incorporated into the collimator assembly. In this software, KAP is automatically determined for each x-ray pulse as the product of the air kerma/ mAs from a calibration file for the given kVp and beam filtration times the mAs per pulse times the length and width of the beam times a field nonuniformity correction factor. Field nonuniformity is primarily the result of the heel effect and the correction factor was determined from the beam profile measured using radio-chromic film. Dividing the KAP by the beam area at the interventional reference point provides the area-averaged CAK. The KAP and CAK per x-ray pulse are summed after each pulse to obtain the total procedure values in real-time. The calculated KAP and CAK were compared to the values displayed by the fluoroscopy machine with excellent agreement. The DTS now is able to automatically calculate both KAP and CAK without the need for measurement by an add-on transmission ionization chamber.

13.
Proc SPIE Int Soc Opt Eng ; 9412: 94122I, 2015 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26819488

RESUMEN

The skin dose tracking system (DTS) that we developed provides a color-coded illustration of the cumulative skin dose distribution on a 3D graphic of the patient during fluoroscopic procedures for immediate feedback to the interventionist. To improve the accuracy of dose calculation, we now have incorporated two additional important corrections (1) for the holder used to immobilize the head in neuro-interventions and (2) for the built-in compensation filters used for beam equalization. Both devices have been modeled in the DTS software so that beam intensity corrections can be made. The head-holder is modeled as two concentric hemi-cylindrical surfaces such that the path length between those surfaces can be determined for rays to individual points on the skin surface. The head-holder on the imaging system we used was measured to attenuate the primary x-rays by 10 to 20% for normal incidence, and up to 40% at non-normal incidence. In addition, three compensation filters of different shape are built into the collimator apparatus and were measured to have attenuation factors ranging from 58% to 99%, depending on kVp and beam filtration. These filters can translate and rotate in the beam and their motion is tracked by the DTS using the digital signal from the imaging system. When it is determined that a ray to a given point on the skin passes through the compensation filter, the appropriate attenuation correction is applied. These corrections have been successfully incorporated in the DTS software to provide a more accurate determination of skin dose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...