Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 566, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745065

RESUMEN

Quinolone synthase from Aegle marmelos (AmQNS) is a type III polyketide synthase that yields therapeutically effective quinolone and acridone compounds. Addressing the structural and molecular underpinnings of AmQNS and its substrate interaction in terms of its high selectivity and specificity can aid in the development of numerous novel compounds. This paper presents a high-resolution AmQNS crystal structure and explains its mechanistic role in synthetic selectivity. Additionally, we provide a model framework to comprehend structural constraints on ketide insertion and postulate that AmQNS's steric and electrostatic selectivity plays a role in its ability to bind to various core substrates, resulting in its synthetic diversity. AmQNS prefers quinolone synthesis and can accommodate large substrates because of its wide active site entrance. However, our research suggests that acridone is exclusively synthesized in the presence of high malonyl-CoA concentrations. Potential implications of functionally relevant residue mutations were also investigated, which will assist in harnessing the benefits of mutations for targeted polyketide production. The pharmaceutical industry stands to gain from these findings as they expand the pool of potential drug candidates, and these methodologies can also be applied to additional promising enzymes.


Asunto(s)
Quinolonas , Especificidad por Sustrato , Quinolonas/química , Quinolonas/metabolismo , Dominio Catalítico , Modelos Moleculares , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Sintasas Poliquetidas/genética , Cristalografía por Rayos X , Conformación Proteica
2.
Physiol Mol Biol Plants ; 30(1): 33-47, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38435849

RESUMEN

Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01414-z.

3.
Life Sci Alliance ; 5(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35440471

RESUMEN

Polycomb repressive complex 2 (PRC2) is involved in maintaining transcriptionally silent chromatin states through methylating lysine 27 of histone H3 by the catalytic subunit enhancer of zeste [E(z)]. Here, we report the diversity of PRC2 core subunit proteins in different eukaryotic supergroups with emphasis on the early-diverged lineages and explore the molecular evolution of PRC2 subunits by phylogenetics. For the first time, we identify the putative ortholog of E(z) in Discoba, a lineage hypothetically proximal to the eukaryotic root, strongly supporting emergence of PRC2 before the diversification of eukaryotes. Analyzing 283 species, we robustly detect a common presence of E(z) and ESC, indicating a conserved functional core. Full-length Su(z)12 orthologs were identified in some lineages and species only, indicating, nonexclusively, high divergence of VEFS-Box-containing Su(z)12-like proteins, functional convergence of sequence-unrelated proteins, or Su(z)12 dispensability. Our results trace E(z) evolution within the SET-domain protein family, proposing a substrate specificity shift during E(z) evolution based on SET-domain and H3 histone interaction prediction.


Asunto(s)
Proteínas de Drosophila , Complejo Represivo Polycomb 2 , Proteínas de Drosophila/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Filogenia , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo
4.
Epigenomes ; 6(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35076495

RESUMEN

Polycomb repressive complex 2 (PRC2) represents a group of evolutionarily conserved multi-subunit complexes that repress gene transcription by introducing trimethylation of lysine 27 on histone 3 (H3K27me3). PRC2 activity is of key importance for cell identity specification and developmental phase transitions in animals and plants. The composition, biochemistry, and developmental function of PRC2 in animal and flowering plant model species are relatively well described. Recent evidence demonstrates the presence of PRC2 complexes in various eukaryotic supergroups, suggesting conservation of the complex and its function. Here, we provide an overview of the current understanding of PRC2-mediated repression in different representatives of eukaryotic supergroups with a focus on the green lineage. By comparison of PRC2 in different eukaryotes, we highlight the possible common and diverged features suggesting evolutionary implications and outline emerging questions and directions for future research of polycomb repression and its evolution.

5.
Curr Mol Pharmacol ; 15(2): 265-291, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33745440

RESUMEN

The emergence of communicable and non-communicable diseases has posed a health challenge for millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of the recent pandemic, SARS-CoV-2, caused by lethal severe acute respiratory syndrome coronavirus 2, is one such example. Rapid research and development of drugs for the treatment and management of these diseases have become an incredibly challenging task for the pharmaceutical industry. Although, substantial attention has been paid to the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has made a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of the latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining natural and synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial for future bioprospecting and drug discovery.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Policétidos , Desarrollo de Medicamentos , Humanos , Péptidos/farmacología , Péptidos/uso terapéutico , Policétidos/química , Policétidos/metabolismo , Policétidos/farmacología , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...