Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chromatogr A ; 1218(38): 6630-8, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21855078

RESUMEN

2H NMR has been used as a tool for probing the state of water in hydrophilic stationary phases for liquid chromatography at temperatures between -80 and +4 °C. The fraction of water that remained unfrozen in four different neat silicas with nominal pore sizes between 60 and 300 Å, and in silicas with polymeric sulfobetaine zwitterionic functionalities prepared in different ways, could be determined by measurements of the line widths and temperature-corrected integrals of the 2H signals. The phase transitions detected during thawing made it possible to estimate the amount of non-freezable water in each phase. A distinct difference was seen between the neat and modified silicas tested. For the neat silicas, the relationship between the freezing point depression and their pore size followed the expected Gibbs-Thomson relationship. The polymeric stationary phases were found to contain considerably higher amounts of non-freezable water compared to the neat silica, which is attributed to the structural effect that the sulfobetaine polymers have on the water layer close to the stationary phase surface. The sulfobetaine stationary phases were used alongside the 100 Å silica to separate a number of polar compounds in hydrophilic interaction (HILIC) mode, and the retention characteristics could be explained in terms of the surface water structure, as well as by the porous properties of the stationary phases. This provides solid evidence supporting a partitioning mechanism, or at least of the existence of an immobilized layer of water into which partitioning could be occurring.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Dióxido de Silicio/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Espectroscopía de Resonancia Magnética , Transición de Fase
2.
J Sep Sci ; 33(2): 191-9, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20087873

RESUMEN

Nitroxide-mediated polymerization was used as a model system for preparing styrenic monolithic materials with significant mesopore contents in different mold formats, with the aim of assessing the validity of pore characterization of capillary monoliths by analysis of parallel bulk polymerized precursor solution. Capillary monoliths were prepared in 250 microm id fused silica tubes (quadruplicate samples, in total 17 m), and the batch polymerizations were carried out in parallel in 100 microL microvials and regular 2 mL glass vials, both in quintuplicate. The monoliths recovered from the molds were characterized for their meso- and macroporous properties by nitrogen sorptiometry (three repeated runs on each sample), followed by a single analysis by mercury intrusion porosimetry. A total of 14 monolith samples were thus analyzed. A Grubbs' test identified one regular vial sample as an outlier in the sorptiometric surface area measurements, and data from this sample were consequently excluded from the pore size calculations, which are based on the same nitrogen sorption data, and also from the mercury intrusion data set. The remaining data were subjected to single factor analyses of variance analyses to test if the porous properties of the capillary monoliths were different from those of the bulk monoliths prepared in parallel. Significant differences were found between all three formats both in their meso- and macroporous properties. When the dimension was shrunk from conventional vial to capillary size, the specific surface area decreased from 52.2+/-4.7 to 34.6+/-1.7 m(2)/g. This decrease in specific surface area was accompanied by a significant shift in median diameter of the through-pores, from 310+/-3.9 to 544+/-13 nm. None of these differences were obvious from the scanning electron micrographs that were acquired for each sample type. The common practice of determining the mesopore characteristics from analysis of samples prepared by parallel bulk polymerization and looking for changes in the macropore structure by visual assessment of SEMs are therefore both rather questionable, at least for monoliths of the kind used in this study.

3.
J Sep Sci ; 32(12): 2008-16, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19479757

RESUMEN

Porous silica particles of 3 microm diameter and 100 A nominal pore size were first activated for vinylic polymerization by functionalization with 3-methacryloyloxypropyl trimethoxysilane (MAPTMS) and thereafter dressed with zwitterionic grafts of the sulfoalkylbetaine type in the "grafting through" fashion by polymerizing 3-(2-(N-methacryloyloxyethyl)-N,N-dimethylammonio)propane sulfonate (SPE), using either free radical polymerization or controlled reversible addition fragmentation chain transfer polymerization (RAFT). Particles polymerized using RAFT had a lower overall coating which seemed to be more evenly distributed in the pore volume. Both approaches resulted in columns with similar separation properties in HILIC mode.


Asunto(s)
Cromatografía Líquida de Alta Presión/instrumentación , Polímeros/química , Dióxido de Silicio/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión/métodos , Ensayo de Materiales , Metacrilatos/química , Datos de Secuencia Molecular , Estructura Molecular , Nitrógeno/química , Tamaño de la Partícula , Péptidos/análisis , Péptidos/genética , Polímeros/síntesis química , Porosidad , Silanos/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA