Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Biotechnol ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653796

RESUMEN

In recent years, generative protein sequence models have been developed to sample novel sequences. However, predicting whether generated proteins will fold and function remains challenging. We evaluate a set of 20 diverse computational metrics to assess the quality of enzyme sequences produced by three contrasting generative models: ancestral sequence reconstruction, a generative adversarial network and a protein language model. Focusing on two enzyme families, we expressed and purified over 500 natural and generated sequences with 70-90% identity to the most similar natural sequences to benchmark computational metrics for predicting in vitro enzyme activity. Over three rounds of experiments, we developed a computational filter that improved the rate of experimental success by 50-150%. The proposed metrics and models will drive protein engineering research by serving as a benchmark for generative protein sequence models and helping to select active variants for experimental testing.

3.
Protein Sci ; 31(12): e4480, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36261883

RESUMEN

Temperature is a fundamental environmental factor that shapes the evolution of organisms. Learning thermal determinants of protein sequences in evolution thus has profound significance for basic biology, drug discovery, and protein engineering. Here, we use a data set of over 3 million BRENDA enzymes labeled with optimal growth temperatures (OGTs) of their source organisms to train a deep neural network model (DeepET). The protein-temperature representations learned by DeepET provide a temperature-related statistical summary of protein sequences and capture structural properties that affect thermal stability. For prediction of enzyme optimal catalytic temperatures and protein melting temperatures via a transfer learning approach, our DeepET model outperforms classical regression models trained on rationally designed features and other deep-learning-based representations. DeepET thus holds promise for understanding enzyme thermal adaptation and guiding the engineering of thermostable enzymes.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Estabilidad de Enzimas , Proteínas/química , Secuencia de Aminoácidos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...