Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(6)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985703

RESUMEN

Availability of PET imaging radiotracers targeting α-synuclein aggregates is important for early diagnosis of Parkinson's disease and related α-synucleinopathies, as well as for the development of new therapeutics. Derived from a pyrazole backbone, 11C-labelled derivatives of anle138b (3-(1,3-benzodioxol-5-yl)-5-(3-bromophenyl)-1H-pyrazole)-an inhibitor of α-synuclein and prion protein oligomerization-are currently in active development as the candidates for PET imaging α-syn aggregates. This work outlines the synthesis of a radiotracer based on the original structure of anle138b, labelled with fluorine-18 isotope, eminently suitable for PET imaging due to half-life and decay energy characteristics (97% ß+ decay, 109.7 min half-life, and 635 keV positron energy). A three-step radiosynthesis was developed starting from 6-[18F]fluoropiperonal (6-[18F]FP) that was prepared using (piperonyl)(phenyl)iodonium bromide as a labelling precursor. The obtained 6-[18F]FP was used directly in the condensation reaction with tosylhydrazide followed by 1,3-cycloaddition of the intermediate with 3'-bromophenylacetylene eliminating any midway without any intermediate purifications. This one-pot approach allowed the complete synthesis of [18F]anle138b within 105 min with RCY of 15 ± 3% (n = 3) and Am in the range of 32-78 GBq/µmol. The [18F]fluoride processing and synthesis were performed in a custom-built semi-automated module, but the method can be implemented in all the modern automated platforms. While there is definitely space for further optimization, the procedure developed is well suited for preclinical studies of this novel radiotracer in animal models and/or cell cultures.


Asunto(s)
Radioisótopos de Flúor , alfa-Sinucleína , Animales , Radioisótopos de Flúor/química , Tomografía de Emisión de Positrones/métodos , Pirazoles
2.
Molecules ; 26(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34771039

RESUMEN

Neolignans honokiol and 4'-O-methylhonokiol (MH) and their derivatives have pronounced anti-inflammatory activity, as evidenced by numerous pharmacological studies. Literature data suggested that cyclooxygenase type 2 (COX-2) may be a target for these compounds in vitro and in vivo. Recent studies of [11C]MPbP (4'-[11C]methoxy-5-propyl-1,1'-biphenyl-2-ol) biodistribution in LPS (lipopolysaccharide)-treated rats have confirmed the high potential of MH derivatives for imaging neuroinflammation. Here, we report the synthesis of four structural analogs of honokiol, of which 4'-(2-fluoroethoxy)-2-hydroxy-5-propyl-1, 1'-biphenyl (F-IV) was selected for labeling with fluorine-18 (T1/2 = 109.8 min) due to its high anti-inflammatory activity confirmed by enzyme immunoassays (EIA) and neuromorphological studies. The high inhibitory potency of F-IV to COX-2 and its moderate lipophilicity and chemical stability are favorable factors for the preliminary evaluation of the radioligand [18F]F-IV in a rodent model of neuroinflammation. [18F]F-IV was prepared with good radiochemical yield and high molar activity and radiochemical purity by 18F-fluoroethylation of the precursor with Boc-protecting group (15) with [18F]2-fluoro-1-bromoethane ([18F]FEB). Ex vivo biodistribution studies revealed a small to moderate increase in radioligand uptake in the brain and peripheral organs of LPS-induced rats compared to control animals. Pretreatment with celecoxib resulted in significant blocking of radioactivity uptake in the brain (pons and medulla), heart, lungs, and kidneys, indicating that [18F]F-IV is likely to specifically bind to COX-2 in a rat model of neuroinflammation. However, in comparison with [11C]MPbP, the new radioligand showed decreased brain uptake in LPS rats and high retention in the blood pool, which apparently could be explained by its high plasma protein binding. We believe that the structure of [18F]F-IV can be optimized by replacing the substituents in the biphenyl core to eliminate these disadvantages and develop new radioligands for imaging activated microglia.


Asunto(s)
Antiinflamatorios/química , Compuestos de Bifenilo/química , Hidrocarburos Fluorados/química , Inflamación/diagnóstico por imagen , Lignanos/química , Radiofármacos/química , Animales , Antiinflamatorios/síntesis química , Compuestos de Bifenilo/síntesis química , Radioisótopos de Flúor , Lignanos/síntesis química , Masculino , Ratones , Ratones Endogámicos C57BL , Radiofármacos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...