Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Chem ; 451: 139526, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38729041

RESUMEN

In order to valorise winemaking grape stalks, subcritical water extraction at 160 and 180 °C has been carried out to obtain phenolic-rich extracts useful for developing active food packaging materials. Red (R) and white (W) varieties (from Requena, Spain) were used, and thus, four kinds of extracts were obtained. These were characterised as to their composition, thermal stability and antioxidant and antibacterial activity. The extracts were incorporated at 6 wt% into polylactic acid (PLA) films and their effect on the optical and barrier properties of the films and their protective effect against sunflower oil oxidation was analysed. Carbohydrates were the major compounds (25-38%) in the extracts that contained 3.5-6.6% of phenolic compounds, the R extracts being the richest, with higher radical scavenging capacity. Every extract exhibited antibacterial effect against Escherichia coli and Listeria innocua, while PLA films with extracts preserved sunflower oil against oxidation.

2.
New Phytol ; 242(2): 524-543, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38413240

RESUMEN

The Poaceae family of plants provides cereal crops that are critical for human and animal nutrition, and also, they are an important source of biomass. Interacting plant cell wall components give rise to recalcitrance to digestion; thus, understanding the wall molecular architecture is important to improve biomass properties. Xylan is the main hemicellulose in grass cell walls. Recently, we reported structural variation in grass xylans, suggesting functional specialisation and distinct interactions with cellulose and lignin. Here, we investigated the functions of these xylans by perturbing the biosynthesis of specific xylan types. We generated CRISPR/Cas9 knockout mutants in Brachypodium distachyon XAX1 and GUX2 genes involved in xylan substitution. Using carbohydrate gel electrophoresis, we identified biochemical changes in different xylan types. Saccharification, cryo-SEM, subcritical water extraction and ssNMR were used to study wall architecture. BdXAX1A and BdGUX2 enzymes modify different types of grass xylan. Brachypodium mutant walls are likely more porous, suggesting the xylan substitutions directed by both BdXAX1A and GUX2 enzymes influence xylan-xylan and/or xylan-lignin interactions. Since xylan substitutions influence wall architecture and digestibility, our findings open new avenues to improve cereals for food and to use grass biomass for feed and the production of bioenergy and biomaterials.


Asunto(s)
Brachypodium , Xilanos , Animales , Humanos , Xilanos/metabolismo , Lignina/metabolismo , Brachypodium/metabolismo , Pared Celular/metabolismo
3.
Carbohydr Polym ; 328: 121723, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38220326

RESUMEN

The inherent colloidal dispersity (due to length, aspect ratio, surface charge heterogeneity) of CNCs, when produced using the typical traditional sulfuric acid hydrolysis route, presents a great challenge when interpreting colloidal properties and linking the CNC film nanostructure to the helicoidal self-assembly mechanism during drying. Indeed, further improvement of this CNC preparation route is required to yield films with better control over the CNC pitch and optical properties. Here we present a modified CNC-preparation protocol, by fractionating and harvesting CNCs with different average surface charges, rod lengths, aspect ratios, already during the centrifugation steps after hydrolysis. This enables faster CNC fractionation, because it is performed in a high ionic strength aqueous medium. By comparing dry films from the three CNC fractions, discrepancies in the CNC self-assembly and structural colors were clearly observed. Conclusively, we demonstrate a fast protocol to harvest different populations of CNCs, that enable tailored refinement of structural colors in CNC films.

4.
Bioresour Technol ; 395: 130387, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295956

RESUMEN

Wheat bran is an abundant and low valued agricultural feedstock rich in valuable biomolecules as arabinoxylans (AX) and ferulic acid with important functional and biological properties. An integrated bioprocess combining subcritical water extraction (SWE) and enzymatic treatments has been developed for maximised recovery of feruloylated arabinoxylans and oligosaccharides from wheat bran. A minimal enzymatic cocktail was developed combining one xylanase from different glycosyl hydrolase families and a feruloyl esterase. The incorporation of xylanolytic enzymes in the integrated SWE bioprocess increased the AX yields up to 75%, higher than traditional alkaline extraction, and SWE or enzymatic treatment alone. The process isolated AX with tailored molecular structures in terms of substitution, molar mass, and ferulic acid, which can be used for structural biomedical applications, food ingredients and prebiotics. This study demonstrates the use of hydrothermal and enzyme technologies for upcycling agricultural side streams into functional bioproducts, contributing to a circular food system.


Asunto(s)
Fibras de la Dieta , Hidrolasas , Humanos , Fibras de la Dieta/metabolismo , Ácidos Cumáricos/metabolismo , Xilanos/metabolismo , Endo-1,4-beta Xilanasas/metabolismo
5.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37666966

RESUMEN

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Asunto(s)
Lignina , Madera , Biomasa , Celulosa
6.
Carbohydr Polym ; 320: 121233, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37659797

RESUMEN

Cereal arabinoxylans (AXs) are complex polysaccharides in terms of their pattern of arabinose and ferulic acid substitutions, which influence their properties in structural and nutritional applications. We have evaluated the influence of the molecular structure of three AXs from wheat and rye with distinct substitutions on the activity of ß-xylanases from different glycosyl hydrolase families (GH 5_34, 8, 10 and 11). The arabinose and ferulic acid substitutions influence the accessibility of the xylanases, resulting in specific profiles of arabinoxylan-oligosaccharides (AXOS). The GH10 xylanase from Aspergillus aculeatus (AcXyn10A) and GH11 from Thermomyces lanuginosus (TlXyn11) showed the highest activity, producing larger amounts of small oligosaccharides in shorter time. The GH8 xylanase from Bacillus sp. (BXyn8) produced linear xylooligosaccharides and was most restricted by arabinose substitution, whereas GH5_34 from Gonapodya prolifera (GpXyn5_34) required arabinose substitution and produced longer (A)XOS substituted on the reducing end. The complementary substrate specificity of BXyn8 and GpXyn5_34 revealed how arabinoses were distributed along the xylan backbones. This study demonstrates that AX source and xylanase specificity influence the production of oligosaccharides with specific structures, which in turn impacts the growth of specific bacteria (Bacteroides ovatus and Bifidobacterium adolescentis) and the production of beneficial metabolites (short-chain fatty acids).

7.
Front Plant Sci ; 14: 1218302, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37528966

RESUMEN

Xylan that comprises roughly 25% of hardwood biomass is undesirable in biorefinery applications involving saccharification and fermentation. Efforts to reduce xylan levels have therefore been made in many species, usually resulting in improved saccharification. However, such modified plants have not yet been tested under field conditions. Here we evaluate the field performance of transgenic hybrid aspen lines with reduced xylan levels and assess their usefulness as short-rotation feedstocks for biorefineries. Three types of transgenic lines were tested in four-year field tests with RNAi constructs targeting either Populus GT43 clades B and C (GT43BC) corresponding to Arabidopsis clades IRX9 and IRX14, respectively, involved in xylan backbone biosynthesis, GATL1.1 corresponding to AtGALT1 involved in xylan reducing end sequence biosynthesis, or ASPR1 encoding an atypical aspartate protease. Their productivity, wood quality traits, and saccharification efficiency were analyzed. The only lines differing significantly from the wild type with respect to growth and biotic stress resistance were the ASPR1 lines, whose stems were roughly 10% shorter and narrower and leaves showed increased arthropod damage. GT43BC lines exhibited no growth advantage in the field despite their superior growth in greenhouse experiments. Wood from the ASPR1 and GT43BC lines had slightly reduced density due to thinner cell walls and, in the case of ASPR1, larger cell diameters. The xylan was less extractable by alkali but more hydrolysable by acid, had increased glucuronosylation, and its content was reduced in all three types of transgenic lines. The hemicellulose size distribution in the GALT1.1 and ASPR1 lines was skewed towards higher molecular mass compared to the wild type. These results provide experimental evidence that GATL1.1 functions in xylan biosynthesis and suggest that ASPR1 may regulate this process. In saccharification without pretreatment, lines of all three constructs provided 8-11% higher average glucose yields than wild-type plants. In saccharification with acid pretreatment, the GT43BC construct provided a 10% yield increase on average. The best transgenic lines of each construct are thus predicted to modestly outperform the wild type in terms of glucose yields per hectare. The field evaluation of transgenic xylan-reduced aspen represents an important step towards more productive feedstocks for biorefineries.

8.
Nat Commun ; 14(1): 4526, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500617

RESUMEN

(1,3;1,4)-ß-D-Glucans are widely distributed in the cell walls of grasses (family Poaceae) and closely related families, as well as some other vascular plants. Additionally, they have been found in other organisms, including fungi, lichens, brown algae, charophycean green algae, and the bacterium Sinorhizobium meliloti. Only three members of the Cellulose Synthase-Like (CSL) genes in the families CSLF, CSLH, and CSLJ are implicated in (1,3;1,4)-ß-D-glucan biosynthesis in grasses. Little is known about the enzymes responsible for synthesizing (1,3;1,4)-ß-D-glucans outside the grasses. In the present study, we report the presence of (1,3;1,4)-ß-D-glucans in the exopolysaccharides of the Gram-positive bacterium Romboutsia ilealis CRIBT. We also report that RiGT2 is the candidate gene of R. ilealis that encodes (1,3;1,4)-ß-D-glucan synthase. RiGT2 has conserved glycosyltransferase family 2 (GT2) motifs, including D, D, D, QXXRW, and a C-terminal PilZ domain that resembles the C-terminal domain of bacteria cellulose synthase, BcsA. Using a direct gain-of-function approach, we insert RiGT2 into Saccharomyces cerevisiae, and (1,3;1,4)-ß-D-glucans are produced with structures similar to those of the (1,3;1,4)-ß-D-glucans of the lichen Cetraria islandica. Phylogenetic analysis reveals that putative (1,3;1,4)-ß-D-glucan synthase candidate genes in several other bacterial species support the finding of (1,3;1,4)-ß-D-glucans in these species.


Asunto(s)
Glucanos , beta-Glucanos , Humanos , Filogenia , beta-Glucanos/química , Polisacáridos , Poaceae/genética , Pared Celular
9.
Plant Mol Biol ; 113(6): 401-414, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37129736

RESUMEN

Plant cell walls are complex structures mainly made up of carbohydrate and phenolic polymers. In addition to their structural roles, cell walls function as external barriers against pathogens and are also reservoirs of glycan structures that can be perceived by plant receptors, activating Pattern-Triggered Immunity (PTI). Since these PTI-active glycans are usually released upon plant cell wall degradation, they are classified as Damage Associated Molecular Patterns (DAMPs). Identification of DAMPs imply their extraction from plant cell walls by using multistep methodologies and hazardous chemicals. Subcritical water extraction (SWE) has been shown to be an environmentally sustainable alternative and a simplified methodology for the generation of glycan-enriched fractions from different cell wall sources, since it only involves the use of water. Starting from Equisetum arvense cell walls, we have explored two different SWE sequential extractions (isothermal at 160 ºC and using a ramp of temperature from 100 to 160 ºC) to obtain glycans-enriched fractions, and we have compared them with those generated with a standard chemical-based wall extraction. We obtained SWE fractions enriched in pectins that triggered PTI hallmarks in Arabidopsis thaliana such as calcium influxes, reactive oxygen species production, phosphorylation of mitogen activated protein kinases and overexpression of immune-related genes. Notably, application of selected SWE fractions to pepper plants enhanced their disease resistance against the fungal pathogen Sclerotinia sclerotiorum. These data support the potential of SWE technology in extracting PTI-active fractions from plant cell wall biomass containing DAMPs and the use of SWE fractions in sustainable crop production.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Equisetum , Resistencia a la Enfermedad , Proteínas de Arabidopsis/genética , Equisetum/metabolismo , Inmunidad de la Planta , Biomasa , Arabidopsis/genética , Plantas/metabolismo , Pared Celular/metabolismo , Polisacáridos/metabolismo , Enfermedades de las Plantas/microbiología
10.
Foods ; 12(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37107409

RESUMEN

Plums (Prunus domestica); red currants (Ribes rubrum); black currants (Ribes nigrum); gooseberries (Ribes uva-crispa); sour cherries (Prunus cerasus); pumpkins (Cuccurbita spp.) are sources for valuable fruit- and berry-juice and cider production. This process leaves a large number of by-products (BP) in the form of pomace, which accounts for up to 80% of the raw material. This by-product represents a rich source of biologically active compounds, especially in the form of different pectic polysaccharides. The pectin extracted from commercial fruits such as citric fruits and apples has high medicinal properties, can be used as edible films and coatings, and is also useful in texture improvement and gel production in the food industry. However, many under-utilized fruits have received little attention regarding the extraction and characterization of their high/value pectin from their by-products. Moreover, the commercial extraction process involving strong acids and high temperature to obtain high-purity pectin leads to the loss of many bioactive components, and these lost components are often compensated for by the addition of synthetic antioxidants and colorants. The aim of the research is to extract pectin from juice production by-products with hot-water extraction using weak organic (0.1 N) citric acid, thus minimizing the impact on the environment. The yield of pectin (PY = 4.47-17.8% DM), galacturonic acid content (47.22-83.57 g 100-1), ash content (1.42-2.88 g 100 g-1), degree of esterification (DE = 45.16-64.06%), methoxyl content (ME = 4.27-8.13%), the total content of phenolic compounds (TPC = 2.076-4.668 µg mg-1, GAE) and the antiradical scavenging activity of the pectin samples (DPPH method (0.56-37.29%)) were determined. Free and total phenolic acids were quantified by saponification using high-pressure liquid chromatography (HPLC). The pectin contained phenolic acids-benzoic (0.25-0.92 µg mg-1), gallic (0.14-0.57 µg mg-1), coumaric (0.04 µg mg-1), and caffeic (0.03 µg mg-1). The pectin extracts from by-products showed glucose and galactose (3.89-21.72 g 100 g-1) as the main neutral sugar monosaccharides. Pectin analysis was performed using FT-IR, and the rheological properties of the pectin gels were determined. The quality of the obtained pectin from the fruit and berry by-products in terms of their high biological activity and high content of glucuronic acids indicated that the products have the potential to be used as natural ingredients in various food products and in pharmaceutical products.

11.
Carbohydr Polym ; 299: 120175, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36876790

RESUMEN

The effects of the high hydrostatic pressure (HPP) pre-treatment on the alginate extraction were seen to greatly depend on the recalcitrant nature of two algae species. Alginates were deeply characterized in terms of composition, structure (HPAEC-PAD, FTIR, NMR, SEC-MALS), functional and technological properties. The pre-treatment significantly increased the alginate yield in the less recalcitrant A. nodosum (AHP) also favoring the extraction of sulphated fucoidan/fucan structures and polyphenols. Although the molecular weight was significantly lower in AHP samples, neither the M/G ratio nor the M and G sequences were modified. In contrast, a lower increase in alginate extraction yield was observed for the more recalcitrant S. latissima after the HPP pre-treatment (SHP), but it significantly affected the M/G values of the resulting extract. The gelling properties of the alginate extracts were also explored by external gelation in CaCl2 solutions. The mechanical strength and nanostructure of the hydrogel beads prepared were determined using compression tests, synchrotron small angle X-ray scattering (SAXS), and cryo-scanning electron microscopy (Cryo-SEM). Interestingly, the application of HPP significantly improved the gel strength of SHP, in agreement with the lower M/G values and the stiffer rod-like conformation obtained for these samples.


Asunto(s)
Alginatos , Presión Hidrostática , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Microscopía por Crioelectrón
12.
Food Chem ; 413: 135660, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36787668

RESUMEN

The intake of dietary fibers is related with important benefits for human health. We produced two different arabinoxylan fibers with (FAX) and without ferulic acid linked (AX), 12.5 and 0.1 mg g-1 of ferulic acid respectively, by subcritical water extraction of wheat bran. Both FAX and AX fibers were used as supplement in bread production, while non-supplemented bread was used as control. Through an enzymatic deconstruction process we investigated the effect of bread making on the fibers, the preservation of their molecular structure (A/X ratio of 0.13 and Mw of 105 Da) and the interaction with other macromolecules in the bread. By mimicking the upper track digestion, we could confirm the non-digestability of the fibers and we used them for the fermentation with B. ovatus and B. adolescentis. The presence of AX fibers during fermentation showed specific substrate adaptation by the probiotic bacteria in correlation with its potential prebiotic effect.


Asunto(s)
Pan , Fibras de la Dieta , Humanos , Pan/microbiología , Fermentación , Xilanos/química , Digestión
13.
Biotechnol Biofuels Bioprod ; 16(1): 2, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604763

RESUMEN

BACKGROUND: Previous studies have revealed that some Auxiliary Activity family 9 (AA9) lytic polysaccharide monooxygenases (LPMOs) oxidize and degrade certain types of xylans when incubated with mixtures of xylan and cellulose. Here, we demonstrate that the xylanolytic activities of two xylan-active LPMOs, TtLPMO9E and TtLPMO9G from Thermothielavioides terrestris, strongly depend on the presence of xylan substitutions. RESULTS: Using mixtures of phosphoric acid-swollen cellulose (PASC) and wheat arabinoxylan (WAX), we show that removal of arabinosyl substitutions with a GH62 arabinofuranosidase resulted in better adsorption of xylan to cellulose, and enabled LPMO-catalyzed cleavage of this xylan. Furthermore, experiments with mixtures of PASC and arabinoglucuronoxylan from spruce showed that debranching of xylan with the GH62 arabinofuranosidase and a GH115 glucuronidase promoted LPMO activity. Analyses of mixtures with PASC and (non-arabinosylated) beechwood glucuronoxylan showed that GH115 action promoted LPMO activity also on this xylan. Remarkably, when WAX was incubated with Avicel instead of PASC in the presence of the GH62, both xylan and cellulose degradation by the LPMO9 were impaired, showing that the formation of cellulose-xylan complexes and their susceptibility to LPMO action also depend on the properties of the cellulose. These debranching effects not only relate to modulation of the cellulose-xylan interaction, which influences the conformation and rigidity of the xylan, but likely also affect the LPMO-xylan interaction, because debranching changes the architecture of the xylan surface. CONCLUSIONS: Our results shed new light on xylanolytic LPMO9 activity and on the functional interplay and possible synergies between the members of complex lignocellulolytic enzyme cocktails. These findings will be relevant for the development of future lignocellulolytic cocktails and biomaterials.

14.
Plant Biotechnol J ; 21(5): 1005-1021, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36668687

RESUMEN

Trees constitute promising renewable feedstocks for biorefinery using biochemical conversion, but their recalcitrance restricts their attractiveness for the industry. To obtain trees with reduced recalcitrance, large-scale genetic engineering experiments were performed in hybrid aspen blindly targeting genes expressed during wood formation and 32 lines representing seven constructs were selected for characterization in the field. Here we report phenotypes of five-year old trees considering 49 traits related to growth and wood properties. The best performing construct considering growth and glucose yield in saccharification with acid pretreatment had suppressed expression of the gene encoding an uncharacterized 2-oxoglutarate-dependent dioxygenase (2OGD). It showed minor changes in wood chemistry but increased nanoporosity and glucose conversion. Suppressed levels of SUCROSE SYNTHASE, (SuSy), CINNAMATE 4-HYDROXYLASE (C4H) and increased levels of GTPase activating protein for ADP-ribosylation factor ZAC led to significant growth reductions and anatomical abnormalities. However, C4H and SuSy constructs greatly improved glucose yields in saccharification without and with pretreatment, respectively. Traits associated with high glucose yields were different for saccharification with and without pretreatment. While carbohydrates, phenolics and tension wood contents positively impacted the yields without pretreatment and growth, lignin content and S/G ratio were negative factors, the yields with pretreatment positively correlated with S lignin and negatively with carbohydrate contents. The genotypes with high glucose yields had increased nanoporosity and mGlcA/Xyl ratio, and some had shorter polymers extractable with subcritical water compared to wild-type. The pilot-scale industrial-like pretreatment of best-performing 2OGD construct confirmed its superior sugar yields, supporting our strategy.


Asunto(s)
Lignina , Populus , Lignina/metabolismo , Populus/genética , Populus/metabolismo , Madera/genética , Madera/metabolismo , Glucosa/metabolismo , Ingeniería Genética
15.
Plant J ; 113(5): 1004-1020, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36602010

RESUMEN

Xylan is the most abundant non-cellulosic polysaccharide in grass cell walls, and it has important structural roles. The name glucuronoarabinoxylan (GAX) is used to describe this variable hemicellulose. It has a linear backbone of ß-1,4-xylose (Xyl) residues that may be substituted with α-1,2-linked (4-O-methyl)-glucuronic acid (GlcA), α-1,3-linked arabinofuranose (Araf), and sometimes acetylation at the O-2 and/or O-3 positions. The role of these substitutions remains unclear, although there is increasing evidence that they affect the way xylan interacts with other cell wall components, particularly cellulose and lignin. Here, we used substitution-dependent endo-xylanase enzymes to investigate the variability of xylan substitution in grass culm cell walls. We show that there are at least three different types of xylan: (i) an arabinoxylan with evenly distributed Araf substitutions without GlcA (AXe); (ii) a glucuronoarabinoxylan with clustered GlcA modifications (GAXc); and (iii) a highly substituted glucuronoarabinoxylan (hsGAX). Immunolocalization of AXe and GAXc in Brachypodium distachyon culms revealed that these xylan types are not restricted to a few cell types but are instead widely detected in Brachypodium cell walls. We hypothesize that there are functionally specialized xylan types within the grass cell wall. The even substitutions of AXe may permit folding and binding on the surface of cellulose fibrils, whereas the more complex substitutions of the other xylans may support a role in the matrix and interaction with other cell wall components.


Asunto(s)
Celulosa , Xilanos , Xilanos/metabolismo , Celulosa/metabolismo , Lignina/metabolismo , Ácido Glucurónico/metabolismo , Xilosa/metabolismo , Pared Celular/metabolismo
16.
Front Microbiol ; 13: 1050160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36569051

RESUMEN

Ferulic acid is a common constituent of the plant cell-wall matrix where it decorates and can crosslink mainly arabinoxylans to provide structural reinforcement. Microbial feruloyl esterases (FAEs) specialize in catalyzing hydrolysis of the ester bonds between phenolic acids and sugar residues in plant cell-wall polysaccharides such as arabinoxylan to release cinnamoyl compounds. Feruloyl esterases from lactic acid bacteria (LAB) have been highlighted as interesting enzymes for their potential applications in the food and pharmaceutical industries; however, there are few studies on the activity and structure of FAEs of LAB origin. Here, we report the crystal structure and biochemical characterization of a feruloyl esterase (LbFAE) from Lentilactobacillus buchneri, a LAB strain that has been used as a silage additive. The LbFAE structure was determined in the absence and presence of product (FA) and reveals a new type of homodimer association not previously observed for fungal or bacterial FAEs. The two subunits associate to restrict access to the active site such that only single FA chains attached to arabinoxylan can be accommodated, an arrangement that excludes access to FA cross-links between arabinoxylan chains. This narrow specificity is further corroborated by the observation that no FA dimers are produced, only FA, when feruloylated arabinoxylan is used as substrate. Docking of arabinofuranosyl-ferulate in the LbFAE structure highlights the restricted active site and lends further support to our hypothesis that LbFAE is specific for single FA side chains in arabinoxylan.

17.
Carbohydr Polym ; 285: 119221, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35287851

RESUMEN

Interaction between xylan and cellulose microfibrils is required to maintain the integrity of secondary cell walls. However, the mechanisms governing their assembly and the effects on cellulose surface polymers are not fully clear. Here, molecular dynamics simulations are used to study xylan adsorption onto hydrated cellulose fibrils. Based on multiple spontaneous adsorption simulations it is shown that an antiparallel orientation is thermodynamically preferred over a parallel one, and that adsorption is accompanied by the formation of regular but orientation-dependent hydrogen bond patterns. Furthermore, xylan adsorption restricts the local dynamics of the adjacent glucose residues in the surface layer to a level of the crystalline core, which is manifested as a three-fold increase in their 13C NMR T1 relaxation time. These results suggest that xylan forms a rigid and ordered layer around the cellulose fibril that functions as a transition phase to more flexible and disordered polysaccharide and lignin domains.

18.
Brain ; 145(7): 2361-2377, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35084461

RESUMEN

Longer glucan chains tend to precipitate. Glycogen, by far the largest mammalian glucan and the largest molecule in the cytosol with up to 55 000 glucoses, does not, due to a highly regularly branched spherical structure that allows it to be perfused with cytosol. Aberrant construction of glycogen leads it to precipitate, accumulate into polyglucosan bodies that resemble plant starch amylopectin and cause disease. This pathology, amylopectinosis, is caused by mutations in a series of single genes whose functions are under active study toward understanding the mechanisms of proper glycogen construction. Concurrently, we are characterizing the physicochemical particularities of glycogen and polyglucosans associated with each gene. These genes include GBE1, EPM2A and EPM2B, which respectively encode the glycogen branching enzyme, the glycogen phosphatase laforin and the laforin-interacting E3 ubiquitin ligase malin, for which an unequivocal function is not yet known. Mutations in GBE1 cause a motor neuron disease (adult polyglucosan body disease), and mutations in EPM2A or EPM2B a fatal progressive myoclonus epilepsy (Lafora disease). RBCK1 deficiency causes an amylopectinosis with fatal skeletal and cardiac myopathy (polyglucosan body myopathy 1, OMIM# 615895). RBCK1 is a component of the linear ubiquitin chain assembly complex, with unique functions including generating linear ubiquitin chains and ubiquitinating hydroxyl (versus canonical amine) residues, including of glycogen. In a mouse model we now show (i) that the amylopectinosis of RBCK1 deficiency, like in adult polyglucosan body disease and Lafora disease, affects the brain; (ii) that RBCK1 deficiency glycogen, like in adult polyglucosan body disease and Lafora disease, has overlong branches; (iii) that unlike adult polyglucosan body disease but like Lafora disease, RBCK1 deficiency glycogen is hyperphosphorylated; and finally (iv) that unlike laforin-deficient Lafora disease but like malin-deficient Lafora disease, RBCK1 deficiency's glycogen hyperphosphorylation is limited to precipitated polyglucosans. In summary, the fundamental glycogen pathology of RBCK1 deficiency recapitulates that of malin-deficient Lafora disease. Additionally, we uncover sex and genetic background effects in RBCK1 deficiency on organ- and brain-region specific amylopectinoses, and in the brain on consequent neuroinflammation and behavioural deficits. Finally, we exploit the portion of the basic glycogen pathology that is common to adult polyglucosan body disease, both forms of Lafora disease and RBCK1 deficiency, namely overlong branches, to show that a unified approach based on downregulating glycogen synthase, the enzyme that elongates glycogen branches, can rescue all four diseases.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo IV , Enfermedad de Lafora , Ubiquitina-Proteína Ligasas , Animales , Regulación hacia Abajo , Glucanos/metabolismo , Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Enfermedad de Lafora/genética , Enfermedad de Lafora/patología , Ratones , Epilepsias Mioclónicas Progresivas , Enfermedades del Sistema Nervioso , Proteínas Tirosina Fosfatasas no Receptoras/genética , Ubiquitina/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Appl Environ Microbiol ; 88(6): e0009622, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35080911

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are mono-copper enzymes that oxidatively degrade various polysaccharides. Genes encoding LPMOs in the AA9 family are abundant in filamentous fungi while their multiplicity remains elusive. We describe a detailed functional characterization of six AA9 LPMOs from the ascomycetous fungus Thermothielavioides terrestris LPH172 (syn. Thielavia terrestris). These six LPMOs were shown to be upregulated during growth on different lignocellulosic substrates in our previous study. Here, we produced them heterologously in Pichia pastoris and tested their activity on various model and native plant cell wall substrates. All six T. terrestris AA9 (TtAA9) LPMOs produced hydrogen peroxide in the absence of polysaccharide substrate and displayed peroxidase-like activity on a model substrate, yet only five of them were active on selected cellulosic substrates. TtLPMO9A and TtLPMO9E were also active on birch acetylated glucuronoxylan, but only when the xylan was combined with phosphoric acid-swollen cellulose (PASC). Another of the six AA9s, TtLPMO9G, was active on spruce arabinoglucuronoxylan mixed with PASC. TtLPMO9A, TtLPMO9E, TtLPMO9G, and TtLPMO9T could degrade tamarind xyloglucan and, with the exception of TtLPMO9T, beechwood xylan when combined with PASC. Interestingly, none of the tested enzymes were active on wheat arabinoxylan, konjac glucomannan, acetylated spruce galactoglucomannan, or cellopentaose. Overall, these functional analyses support the hypothesis that the multiplicity of the fungal LPMO genes assessed in this study relates to the complex and recalcitrant structure of lignocellulosic biomass. Our study also highlights the importance of using native substrates in functional characterization of LPMOs, as we were able to demonstrate distinct, previously unreported xylan-degrading activities of AA9 LPMOs using such substrates. IMPORTANCE The discovery of LPMOs in 2010 has revolutionized the industrial biotechnology field, mainly by increasing the efficiency of cellulolytic enzyme cocktails. Nonetheless, the biological purpose of the multiplicity of LPMO-encoding genes in filamentous fungi has remained an open question. Here, we address this point by showing that six AA9 LPMOs from a single fungal strain have various substrate preferences and activities on tested cellulosic and hemicellulosic substrates, including several native xylan substrates. Importantly, several of these activities could only be detected when using copolymeric substrates that likely resemble plant cell walls more than single fractionated polysaccharides do. Our results suggest that LPMOs have evolved to contribute to the degradation of different complex structures in plant cell walls where different biomass polymers are closely associated. This knowledge together with the elucidated novel xylanolytic activities could aid in further optimization of enzymatic cocktails for efficient degradation of lignocellulosic substrates and more.


Asunto(s)
Proteínas Fúngicas , Oxigenasas de Función Mixta , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hongos/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Polisacáridos/metabolismo , Sordariales
20.
Polymers (Basel) ; 13(7)2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33807128

RESUMEN

The bark of Norway spruce (Picea abies) contains up to 13% pectins that can be extracted by pressurized hot water, which constitute a valuable renewable resource in second-generation lignocellulosic biorefineries. This article proposes, for the first time, structural molecular models for the pectins present in spruce bark. Pectin fractions of tailored molar masses were obtained by fractionation of the pressurized hot water extract of the inner bark using preparative size-exclusion chromatography. The monosaccharide composition, average molar mass distribution, and the glycosidic linkage patterns were analyzed for each fraction. The pectin fraction with high molecular weight (Mw of 59,000 Da) contained a highly branched RG-I domain, which accounted for 80% of the fraction and was mainly substituted with arabinan and arabinogalactan (type I and II) side chains. On the other hand, the fractions with lower molar masses (Mw = 15,000 and 9000 Da) were enriched with linear homogalacturonan domains, and also branched arabinan populations. The integration of the analytical information from the macromolecular size distributions, domain composition, and branch lengths of each pectin fraction, results in a comprehensive understanding of the macromolecular architecture of the pectins extracted from the bark of Norway spruce. This paves the way for the valorization of spruce bark pectic polymers in targeted applications based on their distinct polymeric structures and properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...