Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
2.
Am J Transplant ; 23(4): 464-474, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36710135

RESUMEN

Isolated microvascular inflammation (iMVI) without HLA donor-specific antibodies or C4d deposition in peritubular capillaries remains an enigmatic phenotype that cannot be categorized as antibody-mediated rejection (ABMR) in recent Banff classifications. We included 221 kidney transplant recipients with biopsies with ABMR (n = 73), iMVI (n = 32), and normal (n = 116) diagnoses. We compared peripheral blood leukocyte distribution by flow cytometry and inflammatory infiltrates in kidney transplant biopsies among groups. Flow cytometry showed fewer lymphocytes and total, CD4+, and CD8+ peripheral T cells in iMVI compared with ABMR and normal cases. ABMR and iMVI had fewer total natural Killer (NK) cells but more NKG2A+ NK cells. Immunohistochemistry indicated that ABMR and iMVI had greater CD3+ and CD68+ glomerular infiltration than normal biopsies, whereas CD8+ and TIA1+ cells showed only increased iMVI, suggesting they are cytotoxic T cells. Peritubular capillaries displayed more CD3+, CD56+, TIA1+, and CD68+ cells in both ABMR and iMVI. In contrast, iMVI had less plasma cell infiltration in peritubular capillaries and interstitial aggregates than ABMR. iMVI displayed decreased circulating T and NK cells mirrored by T cell and NK cell infiltration in the renal allograft, similar to ABMR. However, the lesser plasma cell infiltration in iMVI may suggest an antibody-independent underlying stimulus.


Asunto(s)
Trasplante de Riñón , Humanos , Trasplante de Riñón/efectos adversos , Riñón/patología , Anticuerpos , Inflamación/patología , Células Asesinas Naturales , Antígenos HLA , Rechazo de Injerto/patología
3.
Semin Immunol ; 65: 101706, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542944

RESUMEN

Human cytomegalovirus (HCMV) infection exerts broad effects on the immune system. These include the differentiation and persistent expansion of a mature NK cell subset which displays a characteristic phenotypic and functional profile hallmarked by expression of the HLA-E-specific CD94/NKG2C activating receptor. Based on our experience and recent advances in the field, we overview the adaptive features of the NKG2C+ NK cell response, discussing observations and open questions on: (a) the mechanisms and influence of viral and host factors; (b) the existence of other NKG2C- NK cell subsets sharing adaptive features; (c) the development and role of adaptive NKG2C+ NK cells in the response to HCMV in hematopoietic and solid organ transplant patients; (d) their relation with other viral infections, mainly HIV-1; and (e) current perspectives for their use in adoptive immunotherapy of cancer.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Humanos , Células Asesinas Naturales , Diferenciación Celular , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
4.
HLA ; 100(5): 469-478, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35802353

RESUMEN

NK cells monitor altered molecular patterns in tumors and infected cells through an ample array of receptors. Two families of evolutionarily distant receptors have converged to enable human NK cells to sense levels of HLA class I ligands, frequently abnormal in altered cells. Whilst different forms of polymorphism are a hallmark of killer-cell immunoglobulin-like receptors and their classic HLA-A, B, and C ligands, genetic diversity of killer-cell lectin-like receptors for the non-classical HLA-E (CD94/NKG2 heterodimers) is less conspicuous and has attracted less attention. A common pattern of diversification in both receptor families is evolution of pairs of inhibitory and activating homologs for a common ligand, the genes encoding activating receptors being more frequently affected by copy number variation (CNV). This is exemplified by the gene encoding the activating NKG2C subunit (KLRC2 or NKG2C), which marks an NK-cell subpopulation that differentiates or expands in response to cytomegalovirus. We have studied NKG2C diversity in 240 South European individuals, using polymerase chain reaction and sequencing methods to assess both gene CNV and single-nucleotide polymorphisms (SNPs) affecting its promoter, coding and 3'-untranslated (3'UT) regions. Sequence analysis revealed eight common SNPs-one in the promoter, two in the coding sequence, and five in the 3'UT region. These SNPs associate strongly with each other, forming three conserved extended haplotypes (frequencies: 0.456, 0.221, and 0.117). Homo- and heterozygous combination of these, together with complete gene deletion (0.175) and additional haplotypes with frequencies lower than 0.015, generate a diversity of NKG2C genotypes of potential immunological importance.


Asunto(s)
Variaciones en el Número de Copia de ADN , Antígenos de Histocompatibilidad Clase I , Humanos , Regiones no Traducidas 3' , Alelos , Genotipo , Haplotipos , Antígenos de Histocompatibilidad Clase I/genética , Antígenos HLA-A/genética , Inmunoglobulinas/genética , Lectinas/genética , Ligandos , Subfamília C de Receptores Similares a Lectina de Células NK/genética
5.
J Immunol ; 207(7): 1882-1890, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34470855

RESUMEN

Human CMV infection is frequent in kidney transplant recipients (KTR). Pretransplant Ag-specific T cells and adaptive NKG2C+ NK cells associate with reduced incidence of infection in CMV+ KTR. Expansions of adaptive NKG2C+ NK cells were reported in posttransplant CMV-infected KTR. To further explore this issue, NKG2C+ NK, CD8+, and TcRγδ T cells were analyzed pretransplant and at different time points posttransplant for ≥24 mo in a cohort of CMV+ KTR (n = 112), stratified according to CMV viremia detection. In cryopreserved samples from a subgroup (n = 49), adaptive NKG2C+ NK cell markers and T cell subsets were compared after a longer follow-up (median, 56 mo), assessing the frequencies of CMV-specific T cells and viremia at the last time point. Increased proportions of NKG2C+ NK, CD8+, and TcRγδ T cells were detected along posttransplant evolution in viremia(+) KTR. However, the individual magnitude and kinetics of the NKG2C+ NK response was variable and only exceptionally detected among viremia(-) KTR, presumably reflecting subclinical viral replication events. NKG2C+ expansions were independent of KLRC2 zygosity and associated with higher viral loads at diagnosis; no relation with other clinical parameters was perceived. Increased proportions of adaptive NKG2C+ NK cells (CD57+, ILT2+, FcεRIγ-) were observed after resolution of viremia long-term posttransplant, coinciding with increased CD8+ and Vδ2- γδ T cells; at that stage CMV-specific T cells were comparable to viremia(-) cases. These data suggest that adaptive NKG2C+ NK cells participate with T cells to restore CMV replication control, although their relative contribution cannot be discerned.


Asunto(s)
Infecciones por Citomegalovirus/inmunología , Rechazo de Injerto/inmunología , Trasplante de Riñón , Células Asesinas Naturales/inmunología , Muromegalovirus/fisiología , Inmunidad Adaptativa , Anciano , Anciano de 80 o más Años , Femenino , Interacciones Huésped-Patógeno , Humanos , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Subfamília C de Receptores Similares a Lectina de Células NK/metabolismo
6.
Eur J Immunol ; 51(11): 2633-2640, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34358329

RESUMEN

Here, we describe a new, simple, highly multiplexed serological test that generates a more complete picture of seroconversion than single antigen-based assays. Flow cytometry is used to detect multiple Ig isotypes binding to four SARS-CoV-2 antigens: the Spike glycoprotein, its RBD fragment (the main target for neutralizing antibodies), the nucleocapsid protein, and the main cysteine-like protease in a single reaction. Until now, most diagnostic serological tests measured antibodies to only one antigen and in some laboratory-confirmed patients no SARS-CoV-2-specific antibodies could be detected. Our data reveal that while most patients respond against all the viral antigens tested, others show a marked bias to make antibodies against either proteins exposed on the viral particle or those released after cellular infection. With this assay, it was possible to discriminate between patients and healthy controls with 100% confidence. Analysing the response of multiple Ig isotypes to the four antigens in combination may also help to establish a correlation with the severity degree of disease. A more detailed description of the immune responses of different patients to SARS-CoV-2 virus might provide insight into the wide array of clinical presentations of COVID-19.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , Citometría de Flujo/métodos , Antígenos Virales/inmunología , COVID-19/inmunología , Ensayos Analíticos de Alto Rendimiento , Humanos , SARS-CoV-2 , Sensibilidad y Especificidad , Pruebas Serológicas
7.
HLA ; 98(3): 218-222, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34233083

RESUMEN

CD247 (or CD3-ζ chain) is an essential adaptor and signal-transducing molecule of the T-cell antigen receptor (TCR) complex, and it also couples to NK-cell activating receptors such as NKp46, NKp30 and CD16A (FcγRIII). Noncoding sequence polymorphisms and variations in CD247 expression, a tightly regulated process, have been related with an altered immune response in multiple health conditions. A single nucleotide polymorphism (T > A) at nucleotide 844 of the CD247 3'-untranslated region, rs1052231, has been related with lower CD247 gene expression and it has been investigated as a potential biomarker of autoimmune disease. We present here a simple, accurate, reliable, time-efficient, and cost-effective method for CD247-rs1052231 genotyping. Using this method, based on polymerase chain reaction with confronting two-pair primers (PCR-CTPP), we have also characterized the CD247-rs1052231 genotypes in a panel of worldwide available cell lines, which should facilitate study of the role of this polymorphism in immunity and human health.


Asunto(s)
Multimorbilidad , Polimorfismo de Nucleótido Simple , Alelos , Complejo CD3/genética , Estudios Transversales , Genotipo , Humanos , Regiones no Traducidas
8.
Front Immunol ; 12: 615645, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34108956

RESUMEN

Fcγ receptors (FcγR), cell-surface glycoproteins that bind antigen-IgG complexes, control both humoral and cellular immune responses. The FCGR locus on chromosome 1q23.3 comprises five homologous genes encoding low-affinity FcγRII and FcγRIII, and displays functionally relevant polymorphism that impacts on human health. Recurrent events of non-allelic homologous recombination across the FCGR locus result in copy-number variation of ~82.5 kbp-long fragments known as copy-number regions (CNR). Here, we characterize a recently described deletion that we name CNR5, which results in loss of FCGR3A, FCGR3B, and FCGR2C, and generation of a recombinant FCGR3B/A gene. We show that the CNR5 recombination spot lies at the beginning of the third FCGR3 intron. Although the FCGR3B/A-encoded hybrid protein CD16B/A reaches the plasma membrane in transfected cells, its possible natural expression, predictably restricted to neutrophils, could not be demonstrated in resting or interferon γ-stimulated cells. As the CNR5-deletion was originally described in an Ecuadorian family from Llano Grande (an indigenous community in North-Eastern Quito), we characterized the FCGR genetic variation in two populations from the highlands of Ecuador. Our results reveal that CNR5-deletion is relatively frequent in Llano Grande (5 carriers out of 36 donors). Furthermore, we found a high frequency of two strong-phagocytosis variants: the FCGR3B-NA1 haplotype and the CNR1 duplication, which translates into an increased FCGR3B and FCGR2C copy-number. CNR1 duplication was particularly increased in Llano Grande, 77.8% of the studied sample carrying at least one such duplication. In contrast, an extended haplotype CD16A-176V - CD32C-ORF+2B.2 - CD32B-2B.4 including strong activating and inhibitory FcγR variants was absent in Llano Grande and found at a low frequency (8.6%) in Ecuador highlands. This particular distribution of FCGR polymorphism, possibly a result of selective pressures, further confirms the importance of a comprehensive, joint analysis of all genetic variations in the locus and warrants additional studies on their putative clinical impact. In conclusion, our study confirms important ethnic variation at the FCGR locus; it shows a distinctive FCGR polymorphism distribution in Ecuador highlands; provides a molecular characterization of a novel CNR5-deletion associated with CD16A and CD16B deficiency; and confirms its presence in that population.


Asunto(s)
Variaciones en el Número de Copia de ADN , Genética de Población , Polimorfismo de Nucleótido Simple , Receptores de IgG/genética , Alelos , Línea Celular , Ecuador , Proteínas Ligadas a GPI/genética , Expresión Génica , Sitios Genéticos , Variación Genética , Genotipo , Granulocitos/metabolismo , Humanos
10.
Front Immunol ; 12: 755891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126347

RESUMEN

The immune response promoted by SARS-CoV-2 vaccination is relevant to develop novel vaccines and optimized prevention strategies. We analyzed the adaptive immunity in healthy donors (HD) and convalescent individuals (CD), before and after administering BNT162b2 vaccine. Our results revealed specific changes in CD4+ T cell reactivity profile in vaccinated HD and CD, with an increase in S1 and S2 positive individuals, proportionally higher for S2. On the contrary, NCAP reactivity observed in HD and CD patients was no longer detectable after vaccination. Despite the substantial antibody response in CD, MPro-derived peptides did not elicit CD4+ lymphocyte activation in our assay in either condition. HD presented an increment in anti-S and anti-RBD IgG after first dose vaccination, which increased after the second vaccination. Conversely, anti-S and anti-RBD IgG and IgA titers increased in already positive CD after first dose administration, remaining stable after second dose inoculation. Interestingly, we found a strong significant correlation between S1-induced CD4+ response and anti-S IgA pre-vaccination, which was lost after vaccine administration.


Asunto(s)
Vacuna BNT162/inmunología , Linfocitos T CD4-Positivos/inmunología , COVID-19/inmunología , SARS-CoV-2/fisiología , Adulto , Células Cultivadas , Convalecencia , Femenino , Voluntarios Sanos , Humanos , Inmunización Secundaria , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Masculino , Persona de Mediana Edad , Glicoproteína de la Espiga del Coronavirus/inmunología , Especificidad del Receptor de Antígeno de Linfocitos T , Vacunación
11.
HLA ; 97(2): 159-161, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33034132

RESUMEN

The novel C*07:37:01:02 was completely sequenced after haplo-specific amplification from a European Caucasoid carrying B*07:02.


Asunto(s)
Antígenos HLA-C , Alelos , Secuencia de Bases , Antígenos HLA-C/genética , Humanos , Análisis de Secuencia de ADN
12.
Sci Rep ; 10(1): 19398, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33173077

RESUMEN

Adoptive transfer of allogeneic natural killer (NK) cells is becoming a credible immunotherapy for hematological malignancies. In the present work, using an optimized expansion/activation protocol of human NK cells, we generate expanded NK cells (eNK) with increased expression of CD56 and NKp44, while maintaining that of CD16. These eNK cells exerted significant cytotoxicity against cells from 34 B-CLL patients, with only 1 sample exhibiting resistance. This sporadic resistance did not correlate with match between KIR ligands expressed by the eNK cells and the leukemic cells, while cells with match resulted sensitive to eNK cells. This suggests that KIR mismatch is not relevant when expanded NK cells are used as effectors. In addition, we found two examples of de novo resistance to eNK cell cytotoxicity during the clinical course of the disease. Resistance correlated with KIR-ligand match in one of the patients, but not in the other, and was associated with a significant increase in PD-L1 expression in the cells from both patients. Treatment of one of these patients with idelalisib correlated with the loss of PD-L1 expression and with re-sensitization to eNK cytotoxicity. We confirmed the idelalisib-induced decrease in PD-L1 expression in the B-CLL cell line Mec1 and in cultured cells from B-CLL patients. As a main conclusion, our results reinforce the feasibility of using expanded and activated allogeneic NK cells in the treatment of B-CLL.


Asunto(s)
Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/prevención & control , Antineoplásicos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Células Cultivadas , Citotoxicidad Inmunológica/inmunología , Citotoxicidad Inmunológica/fisiología , Citometría de Flujo , Humanos , Inmunoterapia Adoptiva , Células Asesinas Naturales/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo
13.
Orphanet J Rare Dis ; 15(1): 79, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228621

RESUMEN

Following the publication of the original article [1], the authors have requested to amend the Abstract and Discussion section as follows.

14.
Front Immunol ; 11: 440, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256494

RESUMEN

Inhibitory Killer-cell Immunoglobulin-like Receptors (KIR) specific for HLA class I molecules enable human natural killer cells to monitor altered antigen presentation in pathogen-infected and tumor cells. KIR genes display extensive copy-number variation and allelic polymorphism. They organize in a series of variable arrangements, designated KIR haplotypes, which derive from duplications of ancestral genes and sequence diversification through point mutation and unequal crossing-over events. Genomic studies have established the organization of multiple KIR haplotypes-many of them are fixed in most human populations, whereas variants of those have less certain distributions. Whilst KIR-gene diversity of many populations and ethnicities has been explored superficially (frequencies of individual genes and presence/absence profiles), less abundant are in-depth analyses of how such diversity emerges from KIR-haplotype structures. We characterize here the genetic diversity of KIR in a sample of 414 Spanish individuals. Using a parsimonious approach, we manage to explain all 38 observed KIR-gene profiles by homo- or heterozygous combinations of six fixed centromeric and telomeric motifs; of six variant gene arrangements characterized previously by us and others; and of two novel haplotypes never detected before in Caucasoids. Associated to the latter haplotypes, we also identified the novel transcribed KIR2DL5B*0020202 allele, and a chimeric KIR2DS2/KIR2DL3 gene (designated KIR2DL3*033) that challenges current criteria for classification and nomenclature of KIR genes and haplotypes.


Asunto(s)
Genotipo , Células Asesinas Naturales/metabolismo , Receptores KIR/genética , Alelos , Variaciones en el Número de Copia de ADN , Europa (Continente) , Citometría de Flujo , Frecuencia de los Genes , Genética de Población , Haplotipos , Humanos , Polimorfismo Genético , Receptores KIR/metabolismo , Recombinación Genética , España , Transcriptoma
15.
Orphanet J Rare Dis ; 15(1): 9, 2020 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-31924231

RESUMEN

BACKGROUND: C3 hypocomplementemia and the presence of C3 nephritic factor (C3NeF), an autoantibody causing complement system over-activation, are common features among most patients affected by Barraquer-Simons syndrome (BSS), an acquired form of partial lipodystrophy. Moreover, BSS is frequently associated with autoimmune diseases. However, the relationship between complement system dysregulation and BSS remains to be fully elucidated. The aim of this study was to provide a comprehensive immunological analysis of the complement system status, autoantibody signatures and HLA profile in BSS. Thirteen subjects with BSS were recruited for the study. The circulating levels of complement components, C3, C4, Factor B (FB) and Properdin (P), as well as an extended autoantibody profile including autoantibodies targeting complement components and regulators were assessed in serum. Additionally, HLA genotyping was carried out using DNA extracted from peripheral blood mononuclear cells. RESULTS: C3, C4 and FB levels were significantly reduced in patients with BSS as compared with healthy subjects. C3NeF was the most frequently found autoantibody (69.2% of cases), followed by anti-C3 (38.5%), and anti-P and anti-FB (30.8% each). Clinical data showed high prevalence of autoimmune diseases (38.5%), the majority of patients (61.5%) being positive for at least one of the autoantibodies tested. The HLA allele DRB1*11 was present in 54% of BSS patients, and the majority of them (31%) were positive for *11:03 (vs 1.3% in the general population). CONCLUSIONS: Our results confirmed the association between BSS, autoimmunity and C3 hypocomplementemia. Moreover, the finding of autoantibodies targeting complement system proteins points to complement dysregulation as a central pathological event in the development of BSS.


Asunto(s)
Lipodistrofia/inmunología , Lipodistrofia/metabolismo , Adolescente , Adulto , Anciano , Autoinmunidad/fisiología , Niño , Complemento C3/metabolismo , Factor Nefrítico del Complemento 3/metabolismo , Complemento C4/metabolismo , Factor B del Complemento/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Properdina/metabolismo , Adulto Joven
17.
Am J Transplant ; 20(3): 663-676, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31612635

RESUMEN

Cytomegalovirus (CMV) infection constitutes a complication for kidney transplant recipients (KTR) and CMV-specific T cells reduce the risk of viral replication in seropositive patients. CMV promotes the adaptive differentiation and expansion of an NK cell subset, hallmarked by expression of the CD94/NKG2C receptor with additional characteristic features. We previously reported an association of pretransplant NKG2C+ NK cells with a reduced incidence of CMV infection. We have strengthened the analysis in cryopreserved peripheral blood mononuclear cells from an enlarged KTR cohort (n = 145) with homogeneous immunosuppression, excluding cases at low risk of infection (ie, CMV D-R-) or receiving antiviral prophylaxis. Moreover, adaptive NKG2C+ NK cell-associated markers (ie, NKG2A, CD57, Immunoglobulin-like transcript 2 [LIR1 or LILRB1], FcεRI γ chain, and Prolymphocytic Leukemia Zinc Finger transcription factor) as well as T lymphocyte subsets were assessed by multicolor flow cytometry. The relation of NKG2C+ NK cells with T cells specific for CMV antigens was analyzed in pretransplant patients (n = 29) and healthy controls (n = 28). Multivariate Cox regression and Kaplan-Meier analyses supported that NKG2C+ NK cells bearing adaptive markers were specifically associated with a reduced incidence of posttransplant symptomatic CMV infection; no correlation between NKG2C+ NK cells and CMV-specific T cells was observed. These results support that adaptive NKG2C+ NK cells contribute to control CMV infection in KTR.


Asunto(s)
Infecciones por Citomegalovirus , Trasplante de Riñón , Citomegalovirus , Humanos , Trasplante de Riñón/efectos adversos , Células Asesinas Naturales , Leucocitos Mononucleares
18.
PLoS One ; 14(8): e0220459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31393887

RESUMEN

Certain host genetic variants, especially in the human leucocyte antigen (HLA) region, are associated with different progression of HIV-1-induced diseases and AIDS. Long term non progressors (LTNP) represent only the 2% of infected patients but are especially relevant because of their efficient HIV control. In this work we present a global analysis of genetic data in the large national multicenter cohort of Spanish LTNP, which is compared with seronegative individuals and HIV-positive patients. We have analyzed whether several single-nucleotide polymorphisms (SNPs) including in key genes and certain HLA-A and B alleles could be associated with a specific HIV phenotype. A total of 846 individuals, 398 HIV-1-positive patients (213 typical progressors, 55 AIDS patients, and 130 LTNPs) and 448 HIV-negative controls, were genotyped for 15 polymorphisms and HLA-A and B alleles. Significant differences in the allele frequencies among the studied populations identified 16 LTNP-associated genetic factors, 5 of which were defined for the first time as related to LTNP phenotype: the protective effect of HLA-B39, and the detrimental impact of HLA-B18, -A24, -B08 and -A29. The remaining eleven polymorphisms confirmed previous publications, including the protective alleles HLA-B57, rs2395029 (HCP5), HLA bw4 homozygosity, HLA-B52, HLA-B27, CCR2 V64I, rs9264942 (HLA-C) and HLA-A03; and the risk allele HLA bw6 homozygosity. Notably, individual Spanish HIV-negative individuals had an average of 0.12 protective HLA alleles and SNPs, compared with an average of 1.43 protective alleles per LTNP patient, strongly suggesting positive selection of LTNP. Finally, stratification of LTNP according to viral load showed a proportional relationship between the frequency of protective alleles with control of viral load. Interestingly, no differences in the frequency of protection/risk polymorphisms were found between elite controllers and LTNPs maintaining viral loads <2.000 copies/mL throughout the follow-up.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida/genética , VIH-1 , Antígenos HLA/genética , Polimorfismo de Nucleótido Simple , Carga Viral , Síndrome de Inmunodeficiencia Adquirida/sangre , Adolescente , Adulto , Anciano , Progresión de la Enfermedad , Femenino , Antígenos HLA/metabolismo , Humanos , Masculino , Persona de Mediana Edad , España
19.
Cancer Immunol Res ; 7(8): 1280-1292, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189644

RESUMEN

Natural killer (NK) cells can orchestrate effective antitumor immunity. The presence of tumor-infiltrating NK cells in diagnostic biopsies predicts pathologic complete response (pCR) to HER2-specific therapeutic antibodies in patients with primary breast cancer. Here, we analyzed whether diversity in circulating NK cells might influence tumor infiltration and HER2-specific therapeutic antibody efficacy. We found that numbers of circulating CD57+ NK cells inversely correlated with pCR to HER2-specific antibody treatment in patients with primary breast cancer independently of age, traditional clinicopathologic factors, and CD16A 158F/V genotype. This association was uncoupled from the expression of other NK-cell receptors, the presence of adaptive NK cells, or changes in major T-cell subsets, reminiscent of cytomegalovirus-induced immunomodulation. NK-cell activation against trastuzumab-coated HER2+ breast cancer cells was comparable in patients with high and low proportions of CD57+ NK cells. However, circulating CD57+ NK cells displayed decreased CXCR3 expression and CD16A-induced IL2-dependent proliferation in vitro Presence of CD57+ NK cells was reduced in breast tumor-associated infiltrates as compared with paired peripheral blood samples, suggesting deficient homing, proliferation, and/or survival of NK cells in the tumor niche. Indeed, numbers of circulating CD57+ were inversely related to tumor-infiltrating NK-cell numbers. Our data reveal that NK-cell differentiation influences their antitumor potential and that CD57+ NK cells may be a biomarker useful for tailoring HER2 antibody-based therapeutic strategies in breast cancer.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/sangre , Neoplasias de la Mama/metabolismo , Antígenos CD57/metabolismo , Resistencia a Antineoplásicos , Células Asesinas Naturales/metabolismo , Recuento de Linfocitos , Adulto , Anciano , Biopsia , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antígenos CD57/genética , Femenino , Genotipo , Humanos , Inmunomodulación , Inmunofenotipificación , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Linfocitos Infiltrantes de Tumor/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Receptores de IgG/genética
20.
Front Immunol ; 10: 687, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31001281

RESUMEN

Natural killer (NK) cells play a dual role in the defense against viral pathogens by directly lysing infected cells as well as by regulating anti-viral T cell immunity. Infection by human cytomegalovirus (HCMV) promotes a persistent expansion of NKG2C+ adaptive NK cells which have been shown to display enhanced antibody-dependent responses against infected targets and associated to viral control in transplanted patients. Based on gene expression data showing increased transcription of CIITA and several genes related to the MHC class II pathway in adaptive NK cells, we explored their putative capacity for antigen presentation to CD4+ T cells. Phenotypic analysis confirmed a preferential steady-state expression of HLA-DR by circulating NKG2C+ adaptive NK cells in healthy individuals. Expression of HLA-DR in NKG2C+ adaptive NK cells was variable and unrelated to the expression of activation (i.e., CD69 and CD25) or differentiation (i.e., FcRγ chain, CD57) markers, remaining stable over time at the individual level. Incubation of purified NK cells with HCMV complexed with serum specific antibodies induced an up-regulation of surface HLA-DR concomitant to CD16 loss whereas no changes in CD80/CD86 co-stimulatory ligands were detected. In addition, surface CX3CR1 decreased upon antigen-loading while HLA-DR+ NK cells maintained a CCR7-, CXCR3low homing profile. Remarkably, HCMV-loaded purified NK cells activated autologous CD4+ T cells in an HLA-DR dependent manner. The fraction of T lymphocytes activated by antigen-loaded NK cells was smaller than that stimulated by monocyte-derived dendritic cells, corresponding to CD28-negative effector-memory CD4+ T cells with cytotoxic potential. Antigen presentation by NK cells activated a polyfunctional CD4+ T cell response characterized by degranulation (CD107a) and the secretion of Th1 cytokines (IFNγ and TNFα). Overall, our data discloses the capacity of NKG2C+ adaptive NK cells to process and present HCMV antigens to memory CD4+ cytotoxic T cells, directly regulating their response to the viral infection.


Asunto(s)
Presentación de Antígeno , Antígenos Virales/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Antígenos HLA-DR/inmunología , Memoria Inmunológica , Células Asesinas Naturales/inmunología , Subfamília C de Receptores Similares a Lectina de Células NK/inmunología , Adulto , Linfocitos T CD4-Positivos/patología , Infecciones por Citomegalovirus/patología , Femenino , Humanos , Células Asesinas Naturales/patología , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...