Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mSystems ; 9(5): e0026124, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38606974

RESUMEN

Corals establish symbiotic relationships with microorganisms, especially endosymbiotic photosynthetic algae. Although other microbes have been commonly detected in coral tissues, their identity and beneficial functions for their host are unclear. Here, we confirm the beneficial outcomes of the inoculation of bacteria selected as probiotics and use fluorescence in situ hybridization (FISH) to define their localization in the coral Pocillopora damicornis. Our results show the first evidence of the inherent presence of Halomonas sp. and Cobetia sp. in native coral tissues, even before their inoculation. Furthermore, the relative enrichment of these coral tissue-associated bacteria through their inoculation in corals correlates with health improvements, such as increases in photosynthetic potential, and productivity. Our study suggests the symbiotic status of Halomonas sp. and Cobetia sp. in corals by indicating their localization within coral gastrodermis and epidermis and correlating their increased relative abundance through active inoculation with beneficial outcomes for the holobiont. This knowledge is crucial to facilitate the screening and application of probiotics that may not be transient members of the coral microbiome. IMPORTANCE: Despite the promising results indicating the beneficial outcomes associated with the application of probiotics in corals and some scarce knowledge regarding the identity of bacterial cells found within the coral tissue, the correlation between these two aspects is still missing. This gap limits our understanding of the actual diversity of coral-associated bacteria and whether these symbionts are beneficial. Some researchers, for example, have been suggesting that probiotic screening should only focus on the very few known tissue-associated bacteria, such as Endozoicomonas sp., assuming that the currently tested probiotics are not tissue-associated. Here, we provide specific FISH probes for Halomonas sp. and Cobetia sp., expand our knowledge of the identity of coral-associated bacteria and confirm the probiotic status of the tested probiotics. The presence of these beneficial microorganisms for corals (BMCs) inside host tissues and gastric cavities also supports the notion that direct interactions with the host may underpin their probiotic role. This is a new breakthrough; these results argue against the possibility that the positive effects of BMCs are due to factors that are not related to a direct symbiotic interaction, for example, that the host simply feeds on inoculated bacteria or that the bacteria change the water quality.


Asunto(s)
Antozoos , Probióticos , Simbiosis , Antozoos/microbiología , Antozoos/fisiología , Simbiosis/fisiología , Animales , Probióticos/farmacología , Hibridación Fluorescente in Situ , Halomonas/fisiología , Microbiota/fisiología
2.
Bioresour Technol ; 192: 131-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26025351

RESUMEN

In this study, the impact of COD/N ratio and feeding regime on the dynamics of heterotrophs and nitrifiers in moving-bed biofilm reactors was addressed. Based on DGGE analysis of 16S rRNA genes, the influent COD was found to be the main factor determining the overall bacterial diversity. The amoA-gene-based analysis suggested that the dynamic behavior of the substrate in continuous and pulse-feeding reactors influenced the selection of specific ammonium-oxidizing bacteria (AOB) strains. Furthermore, AOB diversity was directly related to the applied COD/N ratio and ammonium-nitrogen load. Maximum specific ammonium oxidation rates observed under non-substrate-limiting conditions were observed to be proportional to the fraction of nitrifiers within the bacterial community. FISH analysis revealed that Nitrosomonas genus dominated the AOB community in all reactors. Moreover, Nitrospira was found to be the only nitrite-oxidizing bacteria (NOB) in the fully autotrophic system, whereas Nitrobacter represented the dominant NOB genus in the organic carbon-fed reactors.


Asunto(s)
Reactores Biológicos/microbiología , Nitrobacter/metabolismo , Nitrógeno/metabolismo , Nitrosomonas/metabolismo , Oxígeno/metabolismo , Compuestos de Amonio/metabolismo , Biopelículas , Nitrificación/genética , Nitritos/metabolismo , Nitrobacter/genética , Nitrosomonas/genética , Oxidación-Reducción , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...