Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cancers (Basel) ; 15(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37509357

RESUMEN

Current methodologies for developing PDX in humanized mice in preclinical trials with immune-based therapies are limited by GVHD. Here, we compared two approaches for establishing PDX tumors in humanized mice: (1) PDX are first established in immune-deficient mice; or (2) PDX are initially established in humanized mice; then established PDX are transplanted to a larger cohort of humanized mice for preclinical trials. With the first approach, there was rapid wasting of PDX-bearing humanized mice with high levels of activated T cells in the circulation and organs, indicating immune-mediated toxicity. In contrast, with the second approach, toxicity was less of an issue and long-term human melanoma tumor growth and maintenance of human chimerism was achieved. Preclinical trials from the second approach revealed that rigosertib, but not anti-PD-1, increased CD8/CD4 T cell ratios in spleen and blood and inhibited PDX tumor growth. Resistance to anti-PD-1 was associated with PDX tumors established from tumors with limited CD8+ T cell content. Our findings suggest that it is essential to carefully manage immune editing by first establishing PDX tumors in humanized mice before expanding PDX tumors into a larger cohort of humanized mice to evaluate therapy response.

2.
Cell Rep Med ; 4(1): 100901, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36652910

RESUMEN

Huseni et al. report that IL-6-STAT3 signaling negatively impacts the anti-tumor function of cytotoxic T cells. Targeting IL-6 signaling may enhance tumor responses to immune checkpoint blockade therapy.


Asunto(s)
Interleucina-6 , Neoplasias , Humanos , Neoplasias/terapia , Linfocitos T Citotóxicos , Transducción de Señal , Inmunoterapia/efectos adversos
3.
Cell Rep ; 41(12): 111826, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543138

RESUMEN

Cancer therapies trigger diverse cellular responses, ranging from apoptotic death to acquisition of persistent therapy-refractory states such as senescence. Tipping the balance toward apoptosis could improve treatment outcomes regardless of therapeutic agent or malignancy. We find that inhibition of the mitochondrial protein BCL-xL increases the propensity of cancer cells to die after treatment with a broad array of oncology drugs, including mitotic inhibitors and chemotherapy. Functional precision oncology and omics analyses suggest that BCL-xL inhibition redirects the outcome of p53 transcriptional response from senescence to apoptosis, which likely occurs via caspase-dependent down-modulation of p21 and downstream cytostatic proteins. Consequently, addition of a BCL-2/xL inhibitor strongly improves melanoma response to the senescence-inducing drug targeting mitotic kinase Aurora kinase A (AURKA) in mice and patient-derived organoids. This study shows a crosstalk between the mitochondrial apoptotic pathway and cell cycle regulation that can be targeted to augment therapeutic efficacy in cancers with wild-type p53.


Asunto(s)
Antineoplásicos , Neoplasias , Animales , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Proteína bcl-X/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Neoplasias/tratamiento farmacológico , Medicina de Precisión , Apoptosis , Antineoplásicos/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Línea Celular Tumoral
4.
J Hematol Oncol ; 15(1): 5, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012610

RESUMEN

BACKGROUND: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19) through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) blunts the broad inflammatory response induced by damage-associated molecular patterns via binding to extracellular high mobility group box 1 and heat shock proteins, as well as regulating the downstream Siglec10-Src homology 2 domain-containing phosphatase 1 pathway. A recent randomized phase III trial evaluating CD24Fc for patients with severe COVID-19 (SAC-COVID; NCT04317040) demonstrated encouraging clinical efficacy. METHODS: Using a systems analytical approach, we studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial to discern the impact of CD24Fc treatment on immune homeostasis. We performed high dimensional spectral flow cytometry and measured the levels of a broad array of cytokines and chemokines to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. RESULTS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found that patients with severe COVID-19 had systemic hyper-activation of multiple cellular compartments, including CD8+ T cells, CD4+ T cells, and CD56+ natural killer cells. Treatment with CD24Fc blunted this systemic inflammation, inducing a return to homeostasis in NK and T cells without compromising the anti-Spike protein antibody response. CD24Fc significantly attenuated the systemic cytokine response and diminished the cytokine coexpression and network connectivity linked with COVID-19 severity and pathogenesis. CONCLUSIONS: Our data demonstrate that CD24Fc rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19.


Asunto(s)
Antígeno CD24/uso terapéutico , COVID-19/prevención & control , Síndrome de Liberación de Citoquinas/prevención & control , Inflamación/prevención & control , SARS-CoV-2/efectos de los fármacos , Anciano , Alarminas/inmunología , Alarminas/metabolismo , Antígeno CD24/química , COVID-19/inmunología , COVID-19/virología , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/metabolismo , Método Doble Ciego , Femenino , Proteína HMGB1/inmunología , Proteína HMGB1/metabolismo , Proteínas de Choque Térmico/inmunología , Proteínas de Choque Térmico/metabolismo , Homeostasis/efectos de los fármacos , Homeostasis/inmunología , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Solubilidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/virología , Resultado del Tratamiento
5.
medRxiv ; 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34462760

RESUMEN

BACKGROUND: SARS-CoV-2 causes COVID-19 through direct lysis of infected lung epithelial cells, which releases damage-associated molecular patterns (DAMPs) and induces a pro-inflammatory cytokine milieu causing systemic inflammation. Anti-viral and anti-inflammatory agents have shown limited therapeutic efficacy. Soluble CD24 (CD24Fc) is able to blunt the broad inflammatory response induced by DAMPs in multiple models. A recent randomized phase III trial evaluating the impact of CD24Fc in patients with severe COVID-19 demonstrated encouraging clinical efficacy. METHODS: We studied peripheral blood samples obtained from patients enrolled at a single institution in the SAC-COVID trial (NCT04317040) collected before and after treatment with CD24Fc or placebo. We performed high dimensional spectral flow cytometry analysis of peripheral blood mononuclear cells and measured the levels of a broad array of cytokines and chemokines. A systems analytical approach was used to discern the impact of CD24Fc treatment on immune homeostasis in patients with COVID-19. FINDINGS: Twenty-two patients were enrolled, and the clinical characteristics from the CD24Fc vs. placebo groups were matched. Using high-content spectral flow cytometry and network-level analysis, we found systemic hyper-activation of multiple cellular compartments in the placebo group, including CD8+ T cells, CD4+ T cells, and CD56+ NK cells. By contrast, CD24Fc-treated patients demonstrated blunted systemic inflammation, with a return to homeostasis in both NK and T cells within days without compromising the ability of patients to mount an effective anti-Spike protein antibody response. A single dose of CD24Fc significantly attenuated induction of the systemic cytokine response, including expression of IL-10 and IL-15, and diminished the coexpression and network connectivity among extensive circulating inflammatory cytokines, the parameters associated with COVID-19 disease severity. INTERPRETATION: Our data demonstrates that CD24Fc treatment rapidly down-modulates systemic inflammation and restores immune homeostasis in SARS-CoV-2-infected individuals, supporting further development of CD24Fc as a novel therapeutic against severe COVID-19. FUNDING: NIH.

6.
Front Immunol ; 12: 690499, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34140957

RESUMEN

The rationale behind cancer immunotherapy is based on the unequivocal demonstration that the immune system plays an important role in limiting cancer initiation and progression. Adoptive cell therapy (ACT) is a form of cancer immunotherapy that utilizes a patient's own immune cells to find and eliminate tumor cells, however, donor immune cells can also be employed in some cases. Here, we focus on T lymphocyte (T cell)-based cancer immunotherapies that have gained significant attention after initial discoveries that graft-versus-tumor responses were mediated by T cells. Accumulating knowledge of T cell development and function coupled with advancements in genetics and data science has enabled the use of a patient's own (autologous) T cells for ACT (TIL ACTs). In TIL ACT, tumor-infiltrating lymphocytes (TILs) are collected from resected tumor material, enhanced and expanded ex-vivo, and delivered back to the patient as therapeutic agents. ACT with TILs has been shown to cause objective tumor regression in several types of cancers including melanoma, cervical squamous cell carcinoma, and cholangiocarcinoma. In this review, we provide a brief history of TIL ACT and discuss the current state of TIL ACT clinical development in solid tumors. We also discuss the niche of TIL ACT in the current cancer therapy landscape and potential strategies for patient selection.


Asunto(s)
Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/trasplante , Neoplasias/terapia , Linfocitos T/trasplante , Animales , Humanos , Inmunoterapia Adoptiva/efectos adversos , Linfocitos Infiltrantes de Tumor/inmunología , Neoplasias/inmunología , Neoplasias/patología , Fenotipo , Linfocitos T/inmunología , Resultado del Tratamiento , Microambiente Tumoral
8.
Mol Cancer ; 20(1): 85, 2021 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34092233

RESUMEN

BACKGROUND: While immune checkpoint blockade (ICB) is the current first-line treatment for metastatic melanoma, it is effective for ~ 52% of patients and has dangerous side effects. The objective here was to identify the feasibility and mechanism of RAS/RAF/PI3K pathway inhibition in melanoma to sensitize tumors to ICB therapy. METHODS: Rigosertib (RGS) is a non-ATP-competitive small molecule RAS mimetic. RGS monotherapy or in combination therapy with ICB were investigated using immunocompetent mouse models of BRAFwt and BRAFmut melanoma and analyzed in reference to patient data. RESULTS: RGS treatment (300 mg/kg) was well tolerated in mice and resulted in ~ 50% inhibition of tumor growth as monotherapy and ~ 70% inhibition in combination with αPD1 + αCTLA4. RGS-induced tumor growth inhibition depends on CD40 upregulation in melanoma cells followed by immunogenic cell death, leading to enriched dendritic cells and activated T cells in the tumor microenvironment. The RGS-initiated tumor suppression was partially reversed by either knockdown of CD40 expression in melanoma cells or depletion of CD8+ cytotoxic T cells. Treatment with either dabrafenib and trametinib or with RGS, increased CD40+SOX10+ melanoma cells in the tumors of melanoma patients and patient-derived xenografts. High CD40 expression level correlates with beneficial T-cell responses and better survival in a TCGA dataset from melanoma patients. Expression of CD40 by melanoma cells is associated with therapeutic response to RAF/MEK inhibition and ICB. CONCLUSIONS: Our data support the therapeutic use of RGS + αPD1 + αCTLA4 in RAS/RAF/PI3K pathway-activated melanomas and point to the need for clinical trials of RGS + ICB for melanoma patients who do not respond to ICB alone. TRIAL REGISTRATION: NCT01205815 (Sept 17, 2010).


Asunto(s)
Antineoplásicos/farmacología , Antígenos CD40/biosíntesis , Glicina/análogos & derivados , Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma/patología , Sulfonas/farmacología , Proteínas ras/antagonistas & inhibidores , Animales , Femenino , Glicina/farmacología , Humanos , Masculino , Melanoma/metabolismo , Ratones , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/antagonistas & inhibidores
9.
Cell Rep ; 35(1): 108944, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33826903

RESUMEN

Inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) delay progression of metastatic breast cancer. However, complete responses are uncommon and tumors eventually relapse. Here, we show that CDK4/6i can enhance efficacy of T cell-based therapies, such as adoptive T cell transfer or T cell-activating antibodies anti-OX40/anti-4-1BB, in murine breast cancer models. This effect is driven by the induction of chemokines CCL5, CXCL9, and CXCL10 in CDK4/6i-treated tumor cells facilitating recruitment of activated CD8+ T cells, but not Tregs, into the tumor. Mechanistically, chemokine induction is associated with metabolic stress that CDK4/6i treatment induces in breast cancer cells. Despite the cell cycle arrest, CDK4/6i-treated cells retain high metabolic activity driven by deregulated PI3K/mTOR pathway. This causes cell hypertrophy and increases mitochondrial content/activity associated with oxidative stress and inflammatory stress response. Our findings uncover a link between tumor metabolic vulnerabilities and anti-tumor immunity and support further development of CDK4/6i and immunotherapy combinations.


Asunto(s)
Quimiocinas/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias Mamarias Animales/inmunología , Inhibidores de Proteínas Quinasas/farmacología , Linfocitos T/inmunología , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Femenino , Humanos , Hipertrofia , Inmunoterapia , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/terapia , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Pronóstico , Especies Reactivas de Oxígeno/metabolismo , Receptores de Quimiocina/metabolismo , Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
10.
Cancer Immunol Res ; 9(2): 200-213, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33177110

RESUMEN

Recruitment of myeloid-derived suppressor cells (MDSC) into the tumor microenvironment (TME) contributes to cancer immune evasion. MDSCs express the chemokine receptor CXCR2, and inhibiting CXCR2 suppresses the recruitment of MDSCs into the tumor and the premetastatic niche. Here, we compared the growth and metastasis of melanoma and breast cancer xenografts in mice exhibiting or not exhibiting targeted deletion of Cxcr2 in myeloid cells (CXCR2myeΔ/Δ vs. CXCR2myeWT). Detailed analysis of leukocyte populations in peripheral blood and in tumors from CXCR2myeΔ/Δ mice revealed that loss of CXCR2 signaling in myeloid cells resulted in reduced intratumoral MDSCs and increased intratumoral CXCL11. The increase in intratumoral CXCL11 was derived in part from tumor-infiltrating B1b cells. The reduction in intratumoral MDSCs coupled with an increase in intratumoral B1b cells expressing CXCL11 resulted in enhanced infiltration and activation of effector CD8+ T cells in the TME of CXCR2myeΔ/Δ mice, accompanied by inhibition of tumor growth in CXCR2myeΔ/Δ mice compared with CXCR2myeWT littermates. Treatment of tumor-bearing mice with a CXCR2 antagonist (SX-682) also inhibited tumor growth, reduced intratumoral MDSCs, and increased intratumoral B1b cells expressing CXCL11, leading to an increase in activated CD8+ T cells in the tumor. Depletion of B220+ cells or depletion of CD8+ T cells reversed the tumor-inhibitory properties in CXCR2myeΔ/Δ mice. These data revealed a mechanism by which loss of CXCR2 signaling in myeloid cells modulates antitumor immunity through decreasing MDSCs and enriching CXCL11-producing B1b cells in the TME, which in turn increases CD8+ T-cell recruitment and activation in tumors.


Asunto(s)
Neoplasias de la Mama/terapia , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL11/metabolismo , Melanoma/terapia , Células Supresoras de Origen Mieloide/inmunología , Receptores de Interleucina-8B/genética , Animales , Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Humanos , Melanoma/inmunología , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Interleucina-8B/metabolismo , Transducción de Señal , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Tomography ; 6(3): 273-287, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32879897

RESUMEN

The National Institutes of Health's (National Cancer Institute) precision medicine initiative emphasizes the biological and molecular bases for cancer prevention and treatment. Importantly, it addresses the need for consistency in preclinical and clinical research. To overcome the translational gap in cancer treatment and prevention, the cancer research community has been transitioning toward using animal models that more fatefully recapitulate human tumor biology. There is a growing need to develop best practices in translational research, including imaging research, to better inform therapeutic choices and decision-making. Therefore, the National Cancer Institute has recently launched the Co-Clinical Imaging Research Resource Program (CIRP). Its overarching mission is to advance the practice of precision medicine by establishing consensus-based best practices for co-clinical imaging research by developing optimized state-of-the-art translational quantitative imaging methodologies to enable disease detection, risk stratification, and assessment/prediction of response to therapy. In this communication, we discuss our involvement in the CIRP, detailing key considerations including animal model selection, co-clinical study design, need for standardization of co-clinical instruments, and harmonization of preclinical and clinical quantitative imaging pipelines. An underlying emphasis in the program is to develop best practices toward reproducible, repeatable, and precise quantitative imaging biomarkers for use in translational cancer imaging and therapy. We will conclude with our thoughts on informatics needs to enable collaborative and open science research to advance precision medicine.


Asunto(s)
Neoplasias , Medicina de Precisión , Animales , Diagnóstico por Imagen , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Proteómica , Investigación Biomédica Traslacional , Estados Unidos
13.
iScience ; 23(8): 101408, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32771978

RESUMEN

Patient-derived cancer organoids hold great potential to accurately model and predict therapeutic responses. Efficient organoid isolation methods that minimize post-collection manipulation of tissues would improve adaptability, accuracy, and applicability to both experimental and real-time clinical settings. Here we present a simple and minimally invasive fine-needle aspiration (FNA)-based organoid culture technique using a variety of tumor types including gastrointestinal, thyroid, melanoma, and kidney. This method isolates organoids directly from patients at the bedside or from resected tissues, requiring minimal tissue processing while preserving the histologic growth patterns and infiltrating immune cells. Finally, we illustrate diverse downstream applications of this technique including in vitro high-throughput chemotherapeutic screens, in situ immune cell characterization, and in vivo patient-derived xenografts. Thus, routine clinical FNA-based collection techniques represent an unappreciated substantial source of material that can be exploited to generate tumor organoids from a variety of tumor types for both discovery and clinical applications.

14.
Breast Cancer Res Treat ; 184(2): 357-364, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32767201

RESUMEN

PURPOSE: Patients with localized breast cancer have a 5-year survival rate > 99% compared to patients with metastatic breast cancer (MBC) that have a 5-year survival rate of ~ 27%. Unregulated PI3K/AKT signaling is a common characteristic of MBC, making it a desirable therapeutic target for tumors with activating mutations in this pathway. Interestingly, inhibition of the PI3K/AKT pathway can affect signaling in immune cells, which could potentially alter the immune phenotype of patients undergoing therapy with these drugs. The purpose of this study is to evaluate how PI3K inhibition affects the immune cells of MBC patients during treatment. METHODS: We investigated the effects of PI3K inhibition on the immune cell populations in peripheral blood of MBC patients enrolled in 4 different clinical trials utilizing PI3K inhibitors. Peripheral blood was drawn at different points in patient treatment cycles to record immune cell fluctuations in response to therapy. RESULTS: MBC patients who responded to treatment with a positive fold-change in cytotoxic T cell population, had an average duration of treatment response of 31.4 months. In contrast, MBC patients who responded to treatment with a negative fold-change in cytotoxic T-cell population, had an average duration of therapeutic response of 5 months. These data suggest that patients with a more robust, initial anti-tumor T cell response may have a longer therapeutic response compared to patients who do not have a robust, initial anti-tumor T cell response. CONCLUSIONS: These results highlight the potential for PI3K inhibition to sensitize tumors to immune checkpoint inhibitors, thus providing additional therapeutic options for patients with MBC.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Humanos , Inmunoterapia , Leucocitos , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico
15.
Clin Cancer Res ; 26(14): 3803-3818, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32234759

RESUMEN

PURPOSE: Over 60% of patients with melanoma respond to immune checkpoint inhibitor (ICI) therapy, but many subsequently progress on these therapies. Second-line targeted therapy is based on BRAF mutation status, but no available agents are available for NRAS, NF1, CDKN2A, PTEN, and TP53 mutations. Over 70% of melanoma tumors have activation of the MAPK pathway due to BRAF or NRAS mutations, while loss or mutation of CDKN2A occurs in approximately 40% of melanomas, resulting in unregulated MDM2-mediated ubiquitination and degradation of p53. Here, we investigated the therapeutic efficacy of over-riding MDM2-mediated degradation of p53 in melanoma with an MDM2 inhibitor that interrupts MDM2 ubiquitination of p53, treating tumor-bearing mice with the MDM2 inhibitor alone or combined with MAPK-targeted therapy. EXPERIMENTAL DESIGN: To characterize the ability of the MDM2 antagonist, KRT-232, to inhibit tumor growth, we established patient-derived xenografts (PDX) from 15 patients with melanoma. Mice were treated with KRT-232 or a combination with BRAF and/or MEK inhibitors. Tumor growth, gene mutation status, as well as protein and protein-phosphoprotein changes, were analyzed. RESULTS: One-hundred percent of the 15 PDX tumors exhibited significant growth inhibition either in response to KRT-232 alone or in combination with BRAF and/or MEK inhibitors. Only BRAFV600WT tumors responded to KRT-232 treatment alone while BRAFV600E/M PDXs exhibited a synergistic response to the combination of KRT-232 and BRAF/MEK inhibitors. CONCLUSIONS: KRT-232 is an effective therapy for the treatment of either BRAFWT or PAN WT (BRAFWT, NRASWT) TP53WT melanomas. In combination with BRAF and/or MEK inhibitors, KRT-232 may be an effective treatment strategy for BRAFV600-mutant tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Adulto , Anciano , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Línea Celular Tumoral , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Melanoma/genética , Melanoma/patología , Ratones , Persona de Mediana Edad , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteolisis/efectos de los fármacos , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitinación/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
ACS Nano ; 14(1): 651-663, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31851488

RESUMEN

The overexpression of immunomarker programmed cell death protein 1 (PD-1) and engagement of PD-1 to its ligand, PD-L1, are involved in the functional impairment of cluster of differentiation 8+ (CD8+) T cells, contributing to cancer progression. However, heterogeneities in PD-L1 expression and variabilities in biopsy-based assays render current approaches inaccurate in predicting PD-L1 status. Therefore, PD-L1 screening alone is not predictive of patient response to treatment, which motivates us to simultaneously detect multiple immunomarkers engaged in immune modulation. Here, we have developed multimodal probes, immunoactive gold nanostars (IGNs), that accurately detect PD-L1+ tumor cells and CD8+ T cells simultaneously in vivo, surpassing the limitations of current immunoimaging techniques. IGNs integrate the whole-body imaging of positron emission tomography with high sensitivity and multiplexing of Raman spectroscopy, enabling the dynamic tracking of both immunomarkers. IGNs also monitor response to immunotherapies in mice treated with combinatorial PD-L1 and CD137 agonists and distinguish responders from those nonresponsive to treatment. Our results showed a multifunctional nanoscale probe with capabilities that cannot be achieved with either modality alone, allowing multiplexed immunologic tumor profiling critical for predicting early response to immunotherapies.


Asunto(s)
Biomarcadores de Tumor/análisis , Oro/química , Inmunoterapia , Melanoma/diagnóstico por imagen , Melanoma/terapia , Nanopartículas del Metal/química , Imagen Óptica , Animales , Antígeno B7-H1/agonistas , Antígeno B7-H1/análisis , Antígeno B7-H1/genética , Biomarcadores de Tumor/agonistas , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Ratones , Tamaño de la Partícula , Propiedades de Superficie , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/análisis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/genética
17.
Sci Transl Med ; 11(505)2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413145

RESUMEN

Intrinsic resistance of unknown mechanism impedes the clinical utility of inhibitors of cyclin-dependent kinases 4 and 6 (CDK4/6i) in malignancies other than breast cancer. Here, we used melanoma patient-derived xenografts (PDXs) to study the mechanisms for CDK4/6i resistance in preclinical settings. We observed that melanoma PDXs resistant to CDK4/6i frequently displayed activation of the phosphatidylinositol 3-kinase (PI3K)-AKT pathway, and inhibition of this pathway improved CDK4/6i response in a p21-dependent manner. We showed that a target of p21, CDK2, was necessary for proliferation in CDK4/6i-treated cells. Upon treatment with CDK4/6i, melanoma cells up-regulated cyclin D1, which sequestered p21 and another CDK inhibitor, p27, leaving a shortage of p21 and p27 available to bind and inhibit CDK2. Therefore, we tested whether induction of p21 in resistant melanoma cells would render them responsive to CDK4/6i. Because p21 is transcriptionally driven by p53, we coadministered CDK4/6i with a murine double minute (MDM2) antagonist to stabilize p53, allowing p21 accumulation. This resulted in improved antitumor activity in PDXs and in murine melanoma. Furthermore, coadministration of CDK4/6 and MDM2 antagonists with standard of care therapy caused tumor regression. Notably, the molecular features associated with response to CDK4/6 and MDM2 inhibitors in PDXs were recapitulated by an ex vivo organotypic slice culture assay, which could potentially be adopted in the clinic for patient stratification. Our findings provide a rationale for cotargeting CDK4/6 and MDM2 in melanoma.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Análisis de Varianza , Animales , Western Blotting , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Replicación del ADN/efectos de los fármacos , Replicación del ADN/genética , Dimetilsulfóxido/farmacología , Humanos , Inmunoprecipitación , Células MCF-7 , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Proteómica , Ensayo de Radioinmunoprecipitación
18.
Front Immunol ; 10: 333, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873179

RESUMEN

Chemokines are small secreted proteins that orchestrate migration and positioning of immune cells within the tissues. Chemokines are essential for the function of the immune system. Accumulating evidence suggest that chemokines play important roles in tumor microenvironment. In this review we discuss an association of chemokine expression and activity within the tumor microenvironment with cancer outcome. We summarize regulation of immune cell recruitment into the tumor by chemokine-chemokine receptor interactions and describe evidence implicating chemokines in promotion of the "inflamed" immune-cell enriched tumor microenvironment. We review both tumor-promoting function of chemokines, such as regulation of tumor metastasis, and beneficial chemokine roles, including stimulation of anti-tumor immunity and response to immunotherapy. Finally, we discuss the therapeutic strategies target tumor-promoting chemokines or induce/deliver beneficial chemokines within the tumor focusing on pre-clinical studies and clinical trials going forward. The goal of this review is to provide insight into comprehensive role of chemokines and their receptors in tumor pathobiology and treatment.


Asunto(s)
Quimiocinas/metabolismo , Vigilancia Inmunológica , Inmunomodulación , Neoplasias/inmunología , Neoplasias/patología , Animales , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Biomarcadores , Carcinogénesis/inmunología , Quimiocinas/farmacología , Quimiocinas/uso terapéutico , Progresión de la Enfermedad , Humanos , Inmunoterapia , Terapia Molecular Dirigida , Metástasis de la Neoplasia , Estadificación de Neoplasias , Neoplasias/mortalidad , Neoplasias/terapia , Pronóstico , Receptores de Quimiocina/metabolismo , Resultado del Tratamiento
19.
Cancer Immunol Res ; 6(10): 1186-1198, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30108045

RESUMEN

The chemokine receptor, CXCR4, is involved in cancer growth, invasion, and metastasis. Several promising CXCR4 antagonists have been shown to halt tumor metastasis in preclinical studies, and clinical trials evaluating the effectiveness of these agents in patients with cancer are ongoing. However, the impact of targeting CXCR4 specifically on immune cells is not clear. Here, we demonstrate that genetic deletion of CXCR4 in myeloid cells (CXCR4MyeΔ/Δ) enhances the antitumor immune response, resulting in significantly reduced melanoma tumor growth. Moreover, CXCR4MyeΔ/Δ mice exhibited slowed tumor progression compared with CXCR4WT mice in an inducible melanocyte BrafV600E/Pten -/- mouse model. The percentage of Fas ligand (FasL)-expressing myeloid cells was reduced in CXCR4MyeΔ/Δ mice as compared with myeloid cells from CXCR4WT mice. In contrast, there was an increased percentage of natural killer (NK) cells expressing FasL in tumors growing in CXCR4MyeΔ/Δ mice. NK cells from CXCR4MyeΔ/Δ mice also exhibited increased tumor cell killing capacity in vivo, based on clearance of NK-sensitive Yac-1 cells. NK cell-mediated killing of Yac-1 cells occurred in a FasL-dependent manner, which was partially dependent upon the presence of CXCR4MyeΔ/Δ neutrophils. Furthermore, enhanced NK cell activity in CXCR4MyeΔ/Δ mice was also associated with increased production of IL18 by specific leukocyte subpopulations. These data suggest that CXCR4-mediated signals from myeloid cells suppress NK cell-mediated tumor surveillance and thereby enhance tumor growth. Systemic delivery of a peptide antagonist of CXCR4 to tumor-bearing CXCR4WT mice resulted in enhanced NK-cell activation and reduced tumor growth, supporting potential clinical implications for CXCR4 antagonism in some cancers. Cancer Immunol Res; 6(10); 1186-98. ©2018 AACR.


Asunto(s)
Citotoxicidad Inmunológica , Proteína Ligando Fas/inmunología , Células Asesinas Naturales/inmunología , Melanoma Experimental/terapia , Receptores CXCR4/antagonistas & inhibidores , Animales , Trasplante de Médula Ósea , Línea Celular Tumoral , Interleucina-18/inmunología , Macrófagos/inmunología , Melanoma Experimental/inmunología , Ratones Endogámicos C57BL , Ratones Transgénicos , Neutrófilos/inmunología , Receptores CXCR4/genética , Receptores CXCR4/inmunología
20.
EBioMedicine ; 24: 43-55, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29030058

RESUMEN

Antagonists of MDM2-p53 interaction are emerging anti-cancer drugs utilized in clinical trials for malignancies that rarely mutate p53, including melanoma. We discovered that MDM2-p53 antagonists protect DNA from drug-induced damage in melanoma cells and patient-derived xenografts. Among the tested DNA damaging drugs were various inhibitors of Aurora and Polo-like mitotic kinases, as well as traditional chemotherapy. Mitotic kinase inhibition causes mitotic slippage, DNA re-replication, and polyploidy. Here we show that re-replication of the polyploid genome generates replicative stress which leads to DNA damage. MDM2-p53 antagonists relieve replicative stress via the p53-dependent activation of p21 which inhibits DNA replication. Loss of p21 promoted drug-induced DNA damage in melanoma cells and enhanced anti-tumor activity of therapy combining MDM2 antagonist with mitotic kinase inhibitor in mice. In summary, MDM2 antagonists may reduce DNA damaging effects of anti-cancer drugs if they are administered together, while targeting p21 can improve the efficacy of such combinations.


Asunto(s)
Azepinas/administración & dosificación , Daño del ADN/efectos de los fármacos , Imidazoles/administración & dosificación , Melanoma/tratamiento farmacológico , Piperazinas/administración & dosificación , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Pirimidinas/administración & dosificación , Pirrolidinas/administración & dosificación , para-Aminobenzoatos/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Azepinas/farmacología , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Replicación del ADN/efectos de los fármacos , Células HCT116 , Humanos , Imidazoles/farmacología , Melanoma/genética , Ratones , Piperazinas/farmacología , Unión Proteica/efectos de los fármacos , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirimidinas/farmacología , Pirrolidinas/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , para-Aminobenzoatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...