Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 231(Pt 3): 116280, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37257742

RESUMEN

This work presents a one-step synthesis methodology for preparing a hydrochar (HC) doped with TiO2 (HC-TiO2) for its application on the degradation of crystal violet (CV) using UV and visible radiation. Byrsonima crassifolia stones were used as precursors along with TiO2 particles. The HC-TiO2 sample was synthesized at 210 °C for 9 h using autogenous pressure. The photocatalyst was characterized to evaluate the TiO2 dispersion, specific surface area, graphitization degree, and band-gap value. Finally, the degradation of CV was investigated by varying the operating conditions of the system, the reuse of the catalyst, and the degradation mechanism. The physicochemical characterization of the HC-TiO2 composite showed good dispersion of TiO2 in the carbonaceous particle. The presence of TiO2 on the hydrochar surface yields a bandgap value of 1.17 eV, enhancing photocatalyst activation with visible radiation. The degradation results evidenced a synergistic effect with both types of radiation due to the hybridized π electrons in the sp2-hybridized structures in the HC surface. The degradation percentages were on average 20% higher using UV radiation than visible radiation under the following conditions: [CV] = 20 mg/L, 1 g/L of photocatalyst load, and pH = 7.0. The reusability experiments demonstrated the feasibility of reusing the HC-TiO2 material up to 5 times with a similar photodegradation percentage. Finally, the results indicated that the HC-TiO2 composite could be considered an efficient material for the photocatalytic treatment of water contaminated with CV.


Asunto(s)
Violeta de Genciana , Rayos Ultravioleta , Luz , Titanio/química , Catálisis
2.
J Phys Chem A ; 118(8): 1390-6, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24517389

RESUMEN

Luminescence concentration quenching in Gd2O3:Eu(3+) nanocrystals results from strong interactions among O(2-) ions and Eu(3+) ions. Because all synthesized Gd2O3:Eu(3+) nanocrystals present the same cubic crystalline phase regardless of Eu(3+) concentration, it is possible to study the optical properties as a function of the dopant concentration. The emission intensities and lifetime curves for Gd2O3:Eu(3+) were analyzed by a simple rate equation model to study the interaction between the O(2-) ions and Eu(3+) ions. The rate equation model considers that such interaction is driven by the following energy transfer processes: the direct energy transfer (O(2-) → Eu(3+)), back-transfer (Eu(3+) → O(2-)), and direct energy migration (Eu(3+) → Eu(3+)). The exact solution of this model agrees with the experimental results, luminescence concentration quenching is reproduced and the corresponding energy transfer rates are reported. Quantitative results suggest that the direct energy transfer and direct energy migration processes are the main responsible for the luminescence concentration quenching, whereas the back-transfer process promotes the Eu(3+) emission.


Asunto(s)
Europio/química , Gadolinio/química , Nanopartículas/química , Transferencia de Energía , Cinética , Luminiscencia , Mediciones Luminiscentes , Nanopartículas/ultraestructura , Tamaño de la Partícula , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...