Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Immunol Cell Biol ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693626

RESUMEN

The development of dendritic cells (DCs) depends on signaling via the FMS-like tyrosine kinase 3 (Flt3) receptor. How Flt3 signaling impacts terminally differentiated DC function is unknown. This is important given the increasing interest in exploiting Flt3 for vaccination and tumor immunotherapy. Here, we examined DCs in mice harboring constitutively activated Flt3 (Flt3-ITD). Flt3ITD/ITD mice possessed expanded splenic DC subsets including plasmacytoid DC, conventional DC (cDC)1, cDC2, double positive (DP) cDC1 (CD11c+ CD8+ CD11b- CD103+ CD86+), noncanonical (NC) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86-) and single positive (SP) cDC1 (CD11c+ CD8+ CD11b- CD103- CD86+). Outcomes of constitutive Flt3 signaling differed depending on the cDC subset examined. In comparison with wild type (WT) DCs, all Flt3ITD/ITD cDCs displayed an altered surface phenotype with changes in costimulatory molecules, major histocompatibility complex class I (MHC I) and II (MHC II). Cytokine secretion patterns, antigen uptake, antigen proteolysis and antigen presenting function differed between WT and Flt3ITD/ITD subsets, particularly cDC2. In summary, Flt3 signaling impacts the function of terminally differentiated cDCs with important consequences for antigen presentation.

2.
NPJ Vaccines ; 9(1): 76, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594284

RESUMEN

Dendritic cell (DC)-targeted vaccination is a new mode of antigen delivery that relies on the use of monoclonal antibodies (mAb) to target antigen to specific DC subsets. The neonatal Fc receptor (FcRn) is a non-classical Fc receptor that binds to immunoglobulin G (IgG) in acidified endosomes and controls its intracellular transport and recycling. FcRn is known to participate in the antigen presentation of immune complexes, however its contribution to DC-targeted vaccination has not previously been examined. Here we have investigated the role of FcRn in antigen presentation using antigen conjugated to IgG mAb which target specific DC receptors, including DEC205 and Clec9A expressed by the conventional DC 1 (cDC1) subset. We show that FcRn is expressed at high levels by cDC1, both at steady-state and following activation and plays a significant role in MHC I cross-presentation and MHC II presentation of antigens that are targeted to cDC1 via mAb specific for DEC205. This effect of FcRn is intrinsic to cDC1 and FcRn impacts the efficacy of anti-DEC205-mediated vaccination against B cell lymphoma. In contrast, FcRn does not impact presentation of antigens targeted to Clec9A and does not regulate presentation of cell-associated antigen. These data highlight a new and unique role of FcRn in controlling the immunogenicity of anti-DEC205-based vaccination, with consequences for exploiting this pathway to improve DC-targeted vaccine outcomes.

3.
Angew Chem Int Ed Engl ; : e202400632, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38679861

RESUMEN

Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but rapid inactivation in water limits practical uses. This natural product covalently bonds to immunological protein MR1 in antigen presenting cells (APCs), enabling MR1 to traffic to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we develop several new series of water-stable compounds tailored for powerful and distinctive immunological functions. We report their water stability, capacity to bind MR1 and traffic it to the cell surface (EC50 17 nM), potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells, and develop compounds with diazirine-alkyne, biotin, or fluorophore labels for studying cellular MR1. Computer modelling casts new light on the molecular mechanism of activation, revealing that activators are first captured in MR1 via  pi-interactions and H-bonds, before tighter covalent bonding to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact and modify human T cells; offering new clues for developing novel vaccine adjuvants, immunotherapeutics, and cancer drugs.

4.
Nat Immunol ; 25(5): 802-819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684922

RESUMEN

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Asunto(s)
Macrófagos , Neoplasias , Sepsis , Humanos , Sepsis/inmunología , Macrófagos/inmunología , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animales , Linfocitos T/inmunología , Receptores CCR2/metabolismo , Persona de Mediana Edad , Ratones , Anciano , Quimiocinas/metabolismo , Adulto
5.
Nat Commun ; 15(1): 2619, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38521764

RESUMEN

Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.


Asunto(s)
Coinfección , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Virus , Ratones , Animales , Humanos , Gripe Humana/patología , Linfocitos T CD8-positivos , Coinfección/patología , Receptores de Antígenos de Linfocitos T , Pulmón/patología
6.
Cell Rep ; 43(2): 113754, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38354086

RESUMEN

Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs). Paralysis affects several generations of cDCs and impairs immunity for 3-4 weeks. Paralyzed cDCs display distinct transcriptomic and phenotypic signatures and show impaired capacity to capture and present antigens in vivo. They also display altered cytokine production patterns upon stimulation. The paralysis program is not initiated in the bone marrow but during final cDC differentiation in peripheral tissues under the influence of local secondary signals that persist after resolution of SIRS. Vaccination with monoclonal antibodies that target cDC receptors or blockade of transforming growth factor ß partially overcomes paralysis and immunosuppression. This work provides insights into the mechanisms of paralysis and describes strategies to restore immunocompetence post-SIRS.


Asunto(s)
Patógenos Transmitidos por la Sangre , Terapia de Inmunosupresión , Humanos , Células Dendríticas , Parálisis , Síndrome de Respuesta Inflamatoria Sistémica
7.
iScience ; 27(2): 108801, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38303725

RESUMEN

The major histocompatibility complex (MHC), Class-I-related (MR1) molecule presents microbiome-synthesized metabolites to Mucosal-associated invariant T (MAIT) cells, present at sites of herpes simplex virus (HSV) infection. During HSV type 1 (HSV-1) infection there is a profound and rapid loss of MR1, in part due to expression of unique short 3 protein. Here we show that virion host shutoff RNase protein downregulates MR1 protein, through loss of MR1 transcripts. Furthermore, a third viral protein, infected cell protein 22, also downregulates MR1, but not classical MHC-I molecules. This occurs early in the MR1 trafficking pathway through proteasomal degradation. Finally, HSV-2 infection results in the loss of MR1 transcripts, and intracellular and surface MR1 protein, comparable to that seen during HSV-1 infection. Thus HSV coordinates a multifaceted attack on the MR1 antigen presentation pathway, potentially protecting infected cells from MAIT cell T cell receptor-mediated detection at sites of primary infection and reactivation.

8.
Nat Rev Immunol ; 24(3): 178-192, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37773272

RESUMEN

MHC antigen presentation plays a fundamental role in adaptive and semi-invariant T cell immunity. Distinct MHC molecules bind antigens that differ in chemical structure, origin and location and present them to specialized T cells. MHC class I-related protein 1 (MR1) presents a range of small molecule antigens to MR1-restricted T (MR1T) lymphocytes. The best studied MR1 ligands are derived from microbial metabolism and are recognized by a major class of MR1T cells known as mucosal-associated invariant T (MAIT) cells. Here, we describe the MR1 antigen presentation pathway: the known types of antigens presented by MR1, the location where MR1-antigen complexes form, the route followed by the complexes to the cell surface, the mechanisms involved in termination of MR1 antigen presentation and the accessory cellular proteins that comprise the MR1 antigen presentation machinery. The current road map of the MR1 antigen presentation pathway reveals potential strategies for therapeutic manipulation of MR1T cell function and provides a foundation for further studies that will lead to a deeper understanding of MR1-mediated immunity.


Asunto(s)
Presentación de Antígeno , Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Menor , Antígenos de Histocompatibilidad Clase I , Antígenos
9.
Curr Opin Immunol ; 83: 102331, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148582

RESUMEN

Antigen (Ag)-presenting cells capture or synthesize Ags that are processed into peptides bound and displayed on the plasma membrane by major histocompatibility complex (MHC) molecules. Here, we review a mechanism that enables cells to present Ag-loaded MHC molecules that they have not produced themselves, namely trogocytosis. During trogocytosis, a cell acquires fragments from another living cell without, in most cases, affecting the viability of the donor cell. The trogocytic cell can incorporate into its own plasma membrane (becoming cross-dressed) proteins acquired from the donor cell, including intact Ag and MHC molecules. Trogocytosis and cross-dressing expand the immunological functions that immune and nonimmune cells are able to carry out, with both beneficial and deleterious consequences.


Asunto(s)
Presentación de Antígeno , Trogocitosis , Humanos , Células Presentadoras de Antígenos , Antígenos de Histocompatibilidad , Vendajes , Antígenos de Histocompatibilidad Clase II
10.
Front Immunol ; 14: 1107497, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845106

RESUMEN

Introduction: The antigen presentation molecule MHC class I related protein-1 (MR1) is best characterized by its ability to present bacterially derived metabolites of vitamin B2 biosynthesis to mucosal-associated invariant T-cells (MAIT cells). Methods: Through in vitro human cytomegalovirus (HCMV) infection in the presence of MR1 ligand we investigate the modulation of MR1 expression. Using coimmunoprecipitation, mass spectrometry, expression by recombinant adenovirus and HCMV deletion mutants we investigate HCMV gpUS9 and its family members as potential regulators of MR1 expression. The functional consequences of MR1 modulation by HCMV infection are explored in coculture activation assays with either Jurkat cells engineered to express the MAIT cell TCR or primary MAIT cells. MR1 dependence in these activation assays is established by addition of MR1 neutralizing antibody and CRISPR/Cas-9 mediated MR1 knockout. Results: Here we demonstrate that HCMV infection efficiently suppresses MR1 surface expression and reduces total MR1 protein levels. Expression of the viral glycoprotein gpUS9 in isolation could reduce both cell surface and total MR1 levels, with analysis of a specific US9 HCMV deletion mutant suggesting that the virus can target MR1 using multiple mechanisms. Functional assays with primary MAIT cells demonstrated the ability of HCMV infection to inhibit bacterially driven, MR1-dependent activation using both neutralizing antibodies and engineered MR1 knockout cells. Discussion: This study identifies a strategy encoded by HCMV to disrupt the MR1:MAIT cell axis. This immune axis is less well characterized in the context of viral infection. HCMV encodes hundreds of proteins, some of which regulate the expression of antigen presentation molecules. However the ability of this virus to regulate the MR1:MAIT TCR axis has not been studied in detail.


Asunto(s)
Células T Invariantes Asociadas a Mucosa , Humanos , Antígenos de Histocompatibilidad Clase I , Citomegalovirus/metabolismo , Antígenos de Histocompatibilidad Menor , Receptores de Antígenos de Linfocitos T/metabolismo
11.
J Infect Dis ; 227(3): 391-401, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648018

RESUMEN

The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.


Asunto(s)
Herpesvirus Humano 3 , Antígenos de Histocompatibilidad Clase I , Animales , Herpesvirus Humano 3/genética , Ligandos , Antígenos de Histocompatibilidad Menor , Complejo Mayor de Histocompatibilidad , Mamíferos
13.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36129434

RESUMEN

MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system.


Asunto(s)
Presentación de Antígeno , Endocitosis , Antígenos de Histocompatibilidad Clase I , Antígenos de Histocompatibilidad Menor , Células T Invariantes Asociadas a Mucosa , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Activación de Linfocitos , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Células T Invariantes Asociadas a Mucosa/metabolismo , Tirosina , Vitaminas
14.
JACC Basic Transl Sci ; 7(7): 627-638, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35958696

RESUMEN

Transfusion is a specific cause of acute kidney injury (AKI) after cardiac surgery. Whether there is an association between the composition of blood products and the onset of AKI is unknown. The present study suggests that the transfusion of packed red blood cells containing a high amount of myeloid-related protein 14 (MRP_14) could increase the incidence of AKI after cardiac surgery. In a mouse model, MRP_14 increased the influx of neutrophils in the kidney after ischemia-reperfusion and their ability to damage tubular cells. Higher concentrations of MRP_14 were found in packed red blood cells from female donors or prepared by whole blood filtration.

15.
Cell Rep ; 40(7): 111205, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977488

RESUMEN

Despite its crucial role in initiation of cytotoxic immune responses, the molecular pathways underlying antigen cross-presentation remain incompletely understood. The mechanism of antigen exit from endocytic compartments into the cytosol is a long-standing matter of controversy, confronting two main models: transfer through specific channels/transporters or rupture of endocytic membranes and leakage of luminal content. By monitoring the occurrence of intracellular damage in conventional dendritic cells (cDCs), we show that cross-presenting cDC1s display more frequent endomembrane injuries and increased recruitment of endosomal sorting complex required for transport (ESCRT)-III, the main repair system for intracellular membranes, relative to cDC2s. Silencing of CHMP2a or CHMP4b, two effector subunits of ESCRT-III, enhances cytosolic antigen export and cross-presentation. This phenotype is partially reversed by chemical inhibition of RIPK3, suggesting that endocytic damage is related to basal activation of the necroptosis pathway. Membrane repair therefore proves crucial in containing antigen export to the cytosol and cross-presentation in cDCs.


Asunto(s)
Reactividad Cruzada , Complejos de Clasificación Endosomal Requeridos para el Transporte , Presentación de Antígeno , Antígenos/metabolismo , Citosol/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo
16.
Am J Respir Crit Care Med ; 206(3): 295-310, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486851

RESUMEN

Rationale: Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. Objectives: To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. Methods: We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation. We systematically searched for respiratory herpes simplex virus (HSV) replications in tracheal aspirates. We also performed chromatin immunoprecipitation sequencing, RNA-sequencing, and in vitro functional assays of monocytes and CD4 T cells collected on Day 1 to characterize the immune response to severe acute brain injury. The primary outcome was the Glasgow Outcome Scale Extended at 6 months. Measurements and Main Results: In 344 patients with severe brain injury, lung HSV reactivations were observed in 39% of the 232 patients seropositive for HSV and independently associated with poor neurological recovery at 6 months (hazard ratio, 1.90; 95% confidence interval, 1.08-3.57). Weighted gene coexpression network analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2 and whose ontogenic analyses revealed decreased IFN-γ-mediated and antiviral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (area under the curve, 0.786; 95% confidence interval, 0.593-0.978). Conclusions: A specific monocyte signature is associated with HSV reactivation and predicts poor recovery after brain injury. The alterations of the immune control of herpesviridae replication are understudied and represent a novel therapeutic target.


Asunto(s)
Lesiones Encefálicas , Herpes Simple , Herpesvirus Humano 1 , Herpesvirus Humano 1/genética , Humanos , Leucocitos Mononucleares , Monocitos
17.
Nat Commun ; 13(1): 1934, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35411049

RESUMEN

The MARCH E3 ubiquitin (Ub) ligase MARCH1 regulates trafficking of major histocompatibility complex class II (MHC II) and CD86, molecules of critical importance to immunity. Here we show, using a genome-wide CRISPR knockout screen, that ubiquitin-like protein 3 (UBL3) is a necessary component of ubiquitination-mediated trafficking of these molecules in mice and in humans. Ubl3-deficient mice have elevated MHC II and CD86 expression on the surface of professional and atypical antigen presenting cells. UBL3 also regulates MHC II and CD86 in human dendritic cells (DCs) and macrophages. UBL3 impacts ubiquitination of MARCH1 substrates, a mechanism that requires UBL3 plasma membrane anchoring via prenylation. Loss of UBL3 alters adaptive immunity with impaired development of thymic regulatory T cells, loss of conventional type 1 DCs, increased number of trogocytic marginal zone B cells, and defective in vivo MHC II and MHC I antigen presentation. In summary, we identify UBL3 as a conserved, critical factor in MARCH1-mediated ubiquitination with important roles in immune responses.


Asunto(s)
Antígenos de Histocompatibilidad Clase II , Ubiquitinas , Animales , Antígeno B7-2/metabolismo , Células Dendríticas , Antígenos de Histocompatibilidad Clase II/metabolismo , Complejo Mayor de Histocompatibilidad , Ratones , Ratones Endogámicos C57BL , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
18.
Cytometry A ; 101(11): 922-941, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35349225

RESUMEN

Understanding the complex elements affecting signal resolution in cytometry is key for quality experimental design and data. In this study, we incorporate autofluorescence as a contributing factor to our understanding of resolution in cytometry and corroborate its impact in fluorescence signal detection through mathematical predictions supported by empirical evidence. Our findings illustrate the critical importance of autofluorescence extraction via full spectrum unmixing in unmasking dim signals and delineating the expression and subset distribution of low abundance markers in discovery projects. We apply our findings to the precise definition of the tissue and cellular distribution of a weakly expressed fluorescent protein that reports on a low-abundance immunological gene. Exploiting the full spectrum coverage enabled by Aurora 5L, we describe a novel approach to the isolation of pure cell subset-specific autofluorescence profiles based on high dimensionality reduction algorithms. This method can also be used to unveil differences in the autofluorescent fingerprints of tissues in homeostasis and after immunological challenges.


Asunto(s)
Algoritmos , Colorantes , Inmunofenotipificación
19.
Science ; 375(6581): eabf7470, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-35143312

RESUMEN

Marginal zone (MZ) B cells produce broad-spectrum antibodies that protect against infection early in life. In some instances, antibody production requires MZ B cells to display pathogen antigens bound to major histocompatibility complex class II (MHC II) molecules to T cells. We describe the trogocytic acquisition of these molecules from conventional dendritic cells (cDCs). Complement component 3 (C3) binds to murine and human MHC II on cDCs. MZ B cells recognize C3 with complement receptor 2 (CR2) and trogocytose the MHC II-C3 complexes, which become exposed on their cell surface. The ubiquitin ligase MARCH1 limits the number of MHC II-C3 complexes displayed on cDCs to prevent their elimination through excessive trogocytosis. Capture of C3 by MHC II thus enables the transfer of cDC-like properties to MZ B cells.


Asunto(s)
Linfocitos B/inmunología , Complemento C3/metabolismo , Células Dendríticas/inmunología , Tejido Linfoide/inmunología , Trogocitosis , Adulto , Animales , Presentación de Antígeno , Linfocitos B/metabolismo , Membrana Celular/metabolismo , Activación de Complemento , Complemento C3/inmunología , Células Dendríticas/metabolismo , Femenino , Antígenos HLA-D/inmunología , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores de Complemento 3d/inmunología , Receptores de Complemento 3d/metabolismo , Linfocitos T/inmunología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
20.
Annu Rev Immunol ; 40: 525-557, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35130030

RESUMEN

Macrophages and conventional dendritic cells (cDCs) are distributed throughout the body, maintaining tissue homeostasis and tolerance to self and orchestrating innate and adaptive immunity against infection and cancer. As they complement each other, it is important to understand how they cooperate and the mechanisms that integrate their functions. Both are exposed to commensal microbes, pathogens, and other environmental challenges that differ widely among anatomical locations and over time. To adjust to these varying conditions, macrophages and cDCs acquire spatiotemporal adaptations (STAs) at different stages of their life cycle that determine how they respond to infection. The STAs acquired in response to previous infections can result in increased responsiveness to infection, termed training, or in reduced responses, termed paralysis, which in extreme cases can cause immunosuppression. Understanding the developmental stage and location where macrophages and cDCs acquire their STAs, and the molecular and cellular players involved in their induction, may afford opportunities to harness their beneficial outcomes and avoid or reverse their deleterious effects. Here we review our current understanding of macrophage and cDC development, life cycle, function, and STA acquisition before, during, and after infection.We propose a unified framework to explain how these two cell types adjust their activities to changing conditions over space and time to coordinate their immunosurveillance functions.


Asunto(s)
Inmunidad Adaptativa , Células Dendríticas , Animales , Diferenciación Celular , Humanos , Tolerancia Inmunológica , Macrófagos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...