Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915629

RESUMEN

Stalled replication forks can be processed by several distinct mechanisms collectively called post-replication repair which includes homologous recombination, fork regression, and translesion DNA synthesis. However, the regulation of the usage between these pathways is not fully understood. The Rad51 protein plays a pivotal role in maintaining genomic stability through its roles in HR and in protecting stalled replication forks from degradation. We report the isolation of separation-of-function mutations in Saccharomyces cerevisiae Rad51 that retain their recombination function but display a defect in fork protection leading to a shift in post-replication repair pathway usage from HR to alternate pathways including mutagenic translesion synthesis. Rad51-E135D and Rad51-K305N show normal in vivo and in vitro recombination despite changes in their DNA binding profiles, in particular to dsDNA, with a resulting effect on their ATPase activities. The mutants lead to a defect in Rad51 recruitment to stalled forks in vivo as well as a defect in the protection of dsDNA from degradation by Dna2-Sgs1 and Exo1 in vitro . A high-resolution cryo-electron microscopy structure of the Rad51-ssDNA filament at 2.4 Å resolution provides a structural basis for a mechanistic understanding of the mutant phenotypes. Together, the evidence suggests a model in which Rad51 binding to duplex DNA is critical to control pathway usage at stalled replication forks.

2.
Nucleic Acids Res ; 50(4): 2074-2080, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35104879

RESUMEN

The DNA damage response (DDR) preserves the genetic integrity of the cell by sensing and repairing damages after a genotoxic stress. Translesion Synthesis (TLS), an error-prone DNA damage tolerance pathway, is controlled by PCNA ubiquitination. In this work, we raise the question whether TLS is controlled locally or globally. Using a recently developed method that allows to follow the bypass of a single lesion inserted into the yeast genome, we show that (i) TLS is controlled locally at each individual lesion by PCNA ubiquitination, (ii) a single lesion is enough to induce PCNA ubiquitination and (iii) PCNA ubiquitination is imperative for TLS to occur. More importantly, we show that the activation of the DDR that follows a genotoxic stress does not increase TLS at individual lesions. We conclude that unlike the SOS response in bacteria, the eukaryotic DDR does not promote TLS and mutagenesis.


Asunto(s)
Reparación del ADN , Replicación del ADN , Daño del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Mutagénesis , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ubiquitinación
3.
Nucleic Acids Res ; 48(11): 6068-6080, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32374842

RESUMEN

We have previously found that UV-induced DNA damage causes hyperphosphorylation of the carboxy terminal domain (CTD) of RNA polymerase II (RNAPII), inhibition of transcriptional elongation and changes in alternative splicing (AS) due to kinetic coupling between transcription and splicing. In an unbiased search for protein kinases involved in the AS response to DNA damage, we have identified glycogen synthase kinase 3 (GSK-3) as an unforeseen participant. Unlike Cdk9 inhibition, GSK-3 inhibition only prevents CTD hyperphosphorylation triggered by UV but not basal phosphorylation. This effect is not due to differential degradation of the phospho-CTD isoforms and can be reproduced, at the AS level, by overexpression of a kinase-dead GSK-3 dominant negative mutant. GSK-3 inhibition abrogates both the reduction in RNAPII elongation and changes in AS elicited by UV. We show that GSK-3 phosphorylates the CTD in vitro, but preferentially when the substrate is previously phosphorylated, consistently with the requirement of a priming phosphorylation reported for GSK-3 efficacy. In line with a role for GSK-3 in the response to DNA damage, GSK-3 inhibition prevents UV-induced apoptosis. In summary, we uncover a novel role for a widely studied kinase in key steps of eukaryotic transcription and pre-mRNA processing.


Asunto(s)
Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Quinasas/metabolismo , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Empalme Alternativo/genética , Empalme Alternativo/efectos de la radiación , Apoptosis/efectos de la radiación , Daño del ADN/efectos de la radiación , Fluorescencia , Genes Dominantes , Genes Reporteros , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/genética , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilación/efectos de la radiación , Proteínas Quinasas/genética , Transcripción Genética/efectos de la radiación , Rayos Ultravioleta
4.
High Throughput ; 8(2)2019 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-31163614

RESUMEN

Post-translational modifications (PTMs) are fundamental traits of protein functionality and their study has been addressed using several approaches over the past years. However, screening methods developed to detect regulators of PTMs imply many challenges and are usually based on expensive techniques. Herein, we described the development and optimization of a western blot-based platform for identification of regulators of a specific PTM-mono-ubiquitylation of proliferating cell nuclear antigen (PCNA). This cell-based method does not require specific equipment, apart from the basic western blot (WB) devices and minor accessories, which are accessible for most research labs. The modifications introduced to the classical WB protocol allow the performance of PTM analysis from a single well of a 96-well plate with minimal sample manipulation and low intra- and inter-plate variability, making this method ideal to screen arrayed compound libraries in a 96-well format. As such, our experimental pipeline provides the proof of concept to design small screenings of PTM regulators by improving the quantitative accuracy and throughput capacity of classical western blots.

5.
Clin Cancer Res ; 25(13): 4049-4062, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30890549

RESUMEN

PURPOSE: BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. EXPERIMENTAL DESIGN: We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dual-tumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. RESULTS: The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. CONCLUSIONS: We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.


Asunto(s)
Proteína BRCA1/deficiencia , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Mutaciones Letales Sintéticas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteína BRCA2/deficiencia , Proteína BRCA2/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Células Cultivadas , Aberraciones Cromosómicas , Daño del ADN , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasa Tipo Polo 1
6.
Oncogene ; 38(22): 4310-4324, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30705406

RESUMEN

Translesion DNA synthesis (TLS) and homologous recombination (HR) cooperate during S-phase to safeguard replication forks integrity. Thus, the inhibition of TLS becomes a promising point of therapeutic intervention in HR-deficient cancers, where TLS impairment might trigger synthetic lethality (SL). The main limitation to test this hypothesis is the current lack of selective pharmacological inhibitors of TLS. Herein, we developed a miniaturized screening assay to identify inhibitors of PCNA ubiquitylation, a key post-translational modification required for efficient TLS activation. After screening a library of 627 kinase inhibitors, we found that targeting the pro-survival kinase AKT leads to strong impairment of PCNA ubiquitylation. Mechanistically, we found that AKT-mediated modulation of Proliferating Cell Nuclear Antigen (PCNA) ubiquitylation after UV requires the upstream activity of DNA PKcs, without affecting PCNA ubiquitylation levels in unperturbed cells. Moreover, we confirmed that persistent AKT inhibition blocks the recruitment of TLS polymerases to sites of DNA damage and impairs DNA replication forks processivity after UV irradiation, leading to increased DNA replication stress and cell death. Remarkably, when we compared the differential survival of HR-proficient vs HR-deficient cells, we found that the combination of UV irradiation and AKT inhibition leads to robust SL induction in HR-deficient cells. We link this phenotype to AKT ability to inhibit PCNA ubiquitylation, since the targeted knockdown of PCNA E3-ligase (RAD18) and a non-ubiquitylable (PCNA K164R) knock-in model recapitulate the observed SL induction. Collectively, this work identifies AKT as a novel regulator of PCNA ubiquitylation and provides the proof-of-concept of inhibiting TLS as a therapeutic approach to selectively kill HR-deficient cells submitted to replication stress.


Asunto(s)
Replicación del ADN/genética , Recombinación Homóloga/genética , Antígeno Nuclear de Célula en Proliferación/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ubiquitinación/genética , Muerte Celular/genética , Línea Celular , Línea Celular Tumoral , ADN/genética , Daño del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Células HCT116 , Células HEK293 , Humanos , Ubiquitina-Proteína Ligasas/genética
7.
Food Chem Toxicol ; 109(Pt 2): 888-897, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28465189

RESUMEN

This work examines the antitumor activity of an isomeric mixture (1), composed of the limonoids meliartenin and its interchangeable isomer 12-hydroxyamoorastatin. The results obtained showed that 1 displayed outstanding cytotoxic activity against CCRF-CEM, K562, A549 and HCT116 cells, with a highly selective effect on the latter, with an IC50 value of 0.2 µM. Based on this finding, HCT116 cells were selected to study the mechanism of action of 1. Cell cycle analysis revealed that 1 induced sustained arrest in the S-phase, which was followed by the triggering of apoptotic cell death and reduced clonogenic capacity. This cytotoxicity was seen to be preceded by the upregulation of the tumor suppressor p53 and its target effector p21. In addition, it was found that p53 expression was required for efficient cell death induction, and thus that the toxicity of 1 relies mainly on p53-dependent mechanisms. Taken together, these findings position 1 as a potent antitumor agent, with potential for the development of novel chemotherapeutic drugs based on the induction of S-phase arrest.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/fisiopatología , Limoninas/farmacología , Melia azedarach/química , Extractos Vegetales/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Antineoplásicos Fitogénicos/química , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Células HCT116 , Humanos , Limoninas/química , Extractos Vegetales/química , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA