Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 619(7971): 720-723, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37187210

RESUMEN

Main-belt comets are small Solar System bodies located in the asteroid belt that repeatedly exhibit comet-like activity (that is, dust comae or tails) during their perihelion passages, strongly indicating ice sublimation1,2. Although the existence of main-belt comets implies the presence of extant water ice in the asteroid belt, no gas has been detected around these objects despite intense scrutiny with the world's largest telescopes3. Here we present James Webb Space Telescope observations that clearly show that main-belt comet 238P/Read has a coma of water vapour, but lacks a significant CO2 gas coma. Our findings demonstrate that the activity of comet Read is driven by water-ice sublimation, and implies that main-belt comets are fundamentally different from the general cometary population. Whether or not comet Read experienced different formation circumstances or evolutionary history, it is unlikely to be a recent asteroid belt interloper from the outer Solar System. On the basis of these results, main-belt comets appear to represent a sample of volatile material that is currently unrepresented in observations of classical comets and the meteoritic record, making them important for understanding the early Solar System's volatile inventory and its subsequent evolution.

2.
Sci Adv ; 7(7)2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33568473

RESUMEN

Isotopic ratios and, in particular, the water D/H ratio are powerful tracers of the evolution and transport of water on Mars. From measurements performed with ExoMars/NOMAD, we observe marked and rapid variability of the D/H along altitude on Mars and across the whole planet. The observations (from April 2018 to April 2019) sample a broad range of events on Mars, including a global dust storm, the evolution of water released from the southern polar cap during southern summer, the equinox phases, and a short but intense regional dust storm. In three instances, we observe water at very high altitudes (>80 km), the prime region where water is photodissociated and starts its escape to space. Rayleigh distillation appears the be the driving force affecting the D/H in many cases, yet in some instances, the exchange of water reservoirs with distinctive D/H could be responsible.

3.
Nature ; 568(7753): 521-525, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971830

RESUMEN

Global dust storms on Mars are rare1,2 but can affect the Martian atmosphere for several months. They can cause changes in atmospheric dynamics and inflation of the atmosphere3, primarily owing to solar heating of the dust3. In turn, changes in atmospheric dynamics can affect the distribution of atmospheric water vapour, with potential implications for the atmospheric photochemistry and climate on Mars4. Recent observations of the water vapour abundance in the Martian atmosphere during dust storm conditions revealed a high-altitude increase in atmospheric water vapour that was more pronounced at high northern latitudes5,6, as well as a decrease in the water column at low latitudes7,8. Here we present concurrent, high-resolution measurements of dust, water and semiheavy water (HDO) at the onset of a global dust storm, obtained by the NOMAD and ACS instruments onboard the ExoMars Trace Gas Orbiter. We report the vertical distribution of the HDO/H2O ratio (D/H) from the planetary boundary layer up to an altitude of 80 kilometres. Our findings suggest that before the onset of the dust storm, HDO abundances were reduced to levels below detectability at altitudes above 40 kilometres. This decrease in HDO coincided with the presence of water-ice clouds. During the storm, an increase in the abundance of H2O and HDO was observed at altitudes between 40 and 80 kilometres. We propose that these increased abundances may be the result of warmer temperatures during the dust storm causing stronger atmospheric circulation and preventing ice cloud formation, which may confine water vapour to lower altitudes through gravitational fall and subsequent sublimation of ice crystals3. The observed changes in H2O and HDO abundance occurred within a few days during the development of the dust storm, suggesting a fast impact of dust storms on the Martian atmosphere.

5.
Science ; 323(5917): 1041-5, 2009 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-19150811

RESUMEN

Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane could be a signature of either origin. Using high-dispersion infrared spectrometers at three ground-based telescopes, we measured methane and water vapor simultaneously on Mars over several longitude intervals in northern early and late summer in 2003 and near the vernal equinox in 2006. When present, methane occurred in extended plumes, and the maxima of latitudinal profiles imply that the methane was released from discrete regions. In northern midsummer, the principal plume contained approximately 19,000 metric tons of methane, and the estimated source strength (>/=0.6 kilogram per second) was comparable to that of the massive hydrocarbon seep at Coal Oil Point in Santa Barbara, California.


Asunto(s)
Marte , Metano , Medio Ambiente Extraterrestre , Estaciones del Año , Análisis Espectral , Vapor
6.
Science ; 310(5746): 270-4, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16166477

RESUMEN

We quantified eight parent volatiles (H2O, C2H6, HCN, CO, CH3OH, H2CO, C2H2, and CH4) in the Jupiter-family comet Tempel 1 using high-dispersion infrared spectroscopy in the wavelength range 2.8 to 5.0 micrometers. The abundance ratio for ethane was significantly higher after impact, whereas those for methanol and hydrogen cyanide were unchanged. The abundance ratios in the ejecta are similar to those for most Oort cloud comets, but methanol and acetylene are lower in Tempel 1 by a factor of about 2. These results suggest that the volatile ices in Tempel 1 and in most Oort cloud comets originated in a common region of the protoplanetary disk.


Asunto(s)
Meteoroides , Júpiter , Compuestos Orgánicos/análisis , Análisis Espectral , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...