Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Med ; 15(1): 213, 2017 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-29207974

RESUMEN

BACKGROUND: Diagnosis of monogenic as well as atypical forms of diabetes mellitus has important clinical implications for their specific diagnosis, prognosis, and targeted treatment. Single gene mutations that affect beta-cell function represent 1-2% of all cases of diabetes. However, phenotypic heterogeneity and lack of family history of diabetes can limit the diagnosis of monogenic forms of diabetes. Next-generation sequencing technologies provide an excellent opportunity to screen large numbers of individuals with a diagnosis of diabetes for mutations in disease-associated genes. METHODS: We utilized a targeted sequencing approach using the Illumina HiSeq to perform a case-control sequencing study of 22 monogenic diabetes genes in 4016 individuals with type 2 diabetes (including 1346 individuals diagnosed before the age of 40 years) and 2872 controls. We analyzed protein-coding variants identified from the sequence data and compared the frequencies of pathogenic variants (protein-truncating variants and missense variants) between the cases and controls. RESULTS: A total of 40 individuals with diabetes (1.8% of early onset sub-group and 0.6% of adult onset sub-group) were carriers of known pathogenic missense variants in the GCK, HNF1A, HNF4A, ABCC8, and INS genes. In addition, heterozygous protein truncating mutations were detected in the GCK, HNF1A, and HNF1B genes in seven individuals with diabetes. Rare missense mutations in the GCK gene were significantly over-represented in individuals with diabetes (0.5% carrier frequency) compared to controls (0.035%). One individual with early onset diabetes was homozygous for a rare pathogenic missense variant in the WFS1 gene but did not have the additional phenotypes associated with Wolfram syndrome. CONCLUSION: Targeted sequencing of genes linked with monogenic diabetes can identify disease-relevant mutations in individuals diagnosed with type 2 diabetes not suspected of having monogenic forms of the disease. Our data suggests that GCK-MODY frequently masquerades as classical type 2 diabetes. The results confirm that MODY is under-diagnosed, particularly in individuals presenting with early onset diabetes and clinically labeled as type 2 diabetes; thus, sequencing of all monogenic diabetes genes should be routinely considered in such individuals. Genetic information can provide a specific diagnosis, inform disease prognosis and may help to better stratify treatment plans.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Mutación , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Análisis Mutacional de ADN , Diabetes Mellitus Tipo 2/diagnóstico , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Mutación Missense , Fenotipo , Pronóstico , Análisis de Secuencia de ADN
2.
PLoS One ; 7(1): e25387, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22247754

RESUMEN

OBJECTIVES: To identify genetic factors that would be predictive of individuals who require an implantable cardioverter-defibrillator (ICD), we conducted a genome-wide association study among individuals with an ICD who experienced a life-threatening arrhythmia (LTA; cases) vs. those who did not over at least a 3-year period (controls). BACKGROUND: Most individuals that receive implantable cardioverter-defibrillators never experience a life-threatening arrhythmia. Genetic factors may help identify who is most at risk. METHODS: Patients with an ICD and extended follow-up were recruited from 34 clinical sites with the goal of oversampling those who had experienced LTA, with a cumulative 607 cases and 297 controls included in the analysis. A total of 1,006 Caucasian patients were enrolled during a time period of 13 months. Arrhythmia status of 904 patients could be confirmed and their genomic data were included in the analysis. In this cohort, there were 704 males, 200 females, and the average age was 73.3 years. We genotyped DNA samples using the Illumina Human660 W Genotyping BeadChip and tested for association between genotype at common variants and the phenotype of having an LTA. RESULTS AND CONCLUSIONS: We did not find any associations reaching genome-wide significance, with the strongest association at chromosome 13, rs11856574 at P = 5×10⁻6. Loci previously implicated in phenotypes such as QT interval (measure of the time between the start of the Q wave and the end of the T wave as measured by electrocardiogram) were not found to be significantly associated with having an LTA. Although powered to detect such associations, we did not find common genetic variants of large effect associated with having a LTA in those of European descent. This indicates that common gene variants cannot be used at this time to guide ICD risk-stratification. TRIAL REGISTRATION: ClinicalTrials.gov NCT00664807.


Asunto(s)
Arritmias Cardíacas/genética , Arritmias Cardíacas/mortalidad , Variaciones en el Número de Copia de ADN/genética , Desfibriladores Implantables , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Genotipo , Humanos , Masculino , Tasa de Supervivencia
3.
Genetics ; 177(2): 689-97, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17720911

RESUMEN

Using a large consortium of undergraduate students in an organized program at the University of California, Los Angeles (UCLA), we have undertaken a functional genomic screen in the Drosophila eye. In addition to the educational value of discovery-based learning, this article presents the first comprehensive genomewide analysis of essential genes involved in eye development. The data reveal the surprising result that the X chromosome has almost twice the frequency of essential genes involved in eye development as that found on the autosomes.


Asunto(s)
Drosophila melanogaster/genética , Ojo , Genes Letales/genética , Mutación , Cromosoma X , Animales , Células Clonales , Drosophila melanogaster/fisiología , Ojo/crecimiento & desarrollo , Genes Esenciales , Genes de Insecto , Genoma de los Insectos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA