Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 38(2): 110240, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35021086

RESUMEN

Maintenance of undifferentiated, long-lived, and often quiescent stem cells in the basal compartment is important for homeostasis and regeneration of multiple epithelial tissues, but the molecular mechanisms that coordinately control basal cell fate and stem cell quiescence are elusive. Here, we report an epithelium-intrinsic requirement for Zeb1, a core transcriptional inducer of epithelial-to-mesenchymal transition, for mammary epithelial ductal side branching and for basal cell regenerative capacity. Our findings uncover an evolutionarily conserved role of Zeb1 in promoting basal cell fate over luminal differentiation. We show that Zeb1 loss results in increased basal cell proliferation at the expense of quiescence and self-renewal. Moreover, Zeb1 cooperates with YAP to activate Axin2 expression, and inhibition of Wnt signaling partially restores stem cell function to Zeb1-deficient basal cells. Thus, Zeb1 is a transcriptional regulator that maintains both basal cell fate and stem cell quiescence, and it functions in part through suppressing Wnt signaling.


Asunto(s)
Linaje de la Célula/genética , Células Madre/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Células 3T3 , Animales , Proteína Axina/metabolismo , Diferenciación Celular , Proliferación Celular , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción , Vía de Señalización Wnt/fisiología , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética
2.
Cell Rep ; 33(8): 108417, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33238115

RESUMEN

Unveiling the molecular mechanisms underlying tissue regeneration provides new opportunities to develop treatments for diabetic ulcers and other chronic skin lesions. Here, we show that Ccl2 secretion by epidermal keratinocytes is directly orchestrated by Nrf2, a prominent transcriptional regulator of tissue regeneration that is activated early after cutaneous injury. Through a unique feedback mechanism, we find that Ccl2 from epidermal keratinocytes not only drives chemotaxis of macrophages into the wound but also triggers macrophage expression of EGF, which in turn activates basal epidermal keratinocyte proliferation. Notably, we find dysfunctional activation of Nrf2 in epidermal keratinocytes of diabetic mice after wounding, which partly explains regenerative impairments associated with diabetes. These findings provide mechanistic insight into the critical relationship between keratinocyte and macrophage signaling during tissue repair, providing the basis for continued investigation of the therapeutic value of Nrf2.


Asunto(s)
Diabetes Mellitus Experimental/fisiopatología , Factor de Crecimiento Epidérmico/metabolismo , Queratinocitos/metabolismo , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ingeniería de Tejidos/métodos , Animales , Humanos , Ratones , Transducción de Señal
3.
PLoS One ; 13(3): e0193178, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29513756

RESUMEN

Mesenchymal stem cells (MSCs) are known to both have powerful immunosuppressive properties and promote allograft tolerance. Determining the environmental oxygen tension and inflammatory conditions under which MSCs are optimally primed for this immunosuppressive function is essential to their utilization in promoting graft tolerance. Of particular interest is the mechanisms governing the interaction between MSCs and regulatory T cells (Tregs), which is relatively unknown. We performed our experiments utilizing rat bone marrow derived MSCs. We observed that priming MSCs in hypoxia promotes maintenance of stem-like characteristics, with greater expression of typical MSC cell-surface markers, increased proliferation, and maintenance of differentiation potential. Addition of autologous MSCs to CD4+/allogeneic endothelial cell (EC) co-culture increases regulatory T cell (Treg) proliferation, which is further enhanced when MSCs are primed in hypoxia. Furthermore, MSC-mediated Treg expansion does not require direct cell-cell contact. The expression of indolamine 2,3-dioxygenase, a mediator of MSC immunomodulation, increases when MSCs are primed in hypoxia, and inhibition of IDO significantly decreases the expansion of Tregs. Priming with inflammatory cytokines IFNγ and TNFα increases also expression of markers associated with MSC immunomodulatory function, but decreases MSC proliferation. The expression of IDO also increases when MSCs are primed with inflammatory cytokines. However, there is no increase in Treg expansion when MSCs are primed with IFNγ, suggesting an alternate mechanism for inflammatory-stimulated MSC immunomodulation. Overall, these results suggest that MSCs primed in hypoxia or inflammatory conditions are optimally primed for immunosuppressive function. These results provide a clearer picture of how to enhance MSC immunomodulation for clinical use.


Asunto(s)
Células de la Médula Ósea/inmunología , Proliferación Celular , Microambiente Celular/inmunología , Inmunomodulación/inmunología , Células Madre Mesenquimatosas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Células de la Médula Ósea/metabolismo , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Hipoxia de la Célula , Células Cultivadas , Microambiente Celular/efectos de los fármacos , Técnicas de Cocultivo , Citocinas/inmunología , Citocinas/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratas Endogámicas Lew , Linfocitos T Reguladores/metabolismo
4.
PLoS Comput Biol ; 11(11): e1004569, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26554584

RESUMEN

Reversible epithelial-to-mesenchymal transition (EMT) is central to tissue development, epithelial stemness, and cancer metastasis. While many regulatory elements have been identified to induce EMT, the complex process underlying such cellular plasticity remains poorly understood. Utilizing a systems biology approach integrating modeling and experiments, we found multiple intermediate states contributing to EMT and that the robustness of the transitions is modulated by transcriptional factor Ovol2. In particular, we obtained evidence for a mutual inhibition relationship between Ovol2 and EMT inducer Zeb1, and observed that adding this regulation generates a novel four-state system consisting of two distinct intermediate phenotypes that differ in differentiation propensities and are favored in different environmental conditions. We identified epithelial cells that naturally exist in an intermediate state with bidirectional differentiation potential, and found the balance between EMT-promoting and -inhibiting factors to be critical in achieving and selecting between intermediate states. Our analysis suggests a new design principle in controlling cellular plasticity through multiple intermediate cell fates and underscores the critical involvement of Ovol2 and its associated molecular regulations.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Retroalimentación Fisiológica , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Línea Celular , Línea Celular Tumoral , Biología Computacional , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Factores de Transcripción/metabolismo , Dedos de Zinc
5.
Dev Cell ; 29(1): 47-58, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735878

RESUMEN

During epithelial tissue morphogenesis, developmental progenitor cells undergo dynamic adhesive and cytoskeletal remodeling to trigger proliferation and migration. Transcriptional mechanisms that restrict such a mild form of epithelial plasticity to maintain lineage-restricted differentiation in committed epithelial tissues are poorly understood. Here, we report that simultaneous ablation of transcriptional repressor-encoding Ovol1 and Ovol2 results in expansion and blocked terminal differentiation of embryonic epidermal progenitor cells. Conversely, mice overexpressing Ovol2 in their skin epithelia exhibit precocious differentiation accompanied by smaller progenitor cell compartments. We show that Ovol1/Ovol2-deficient epidermal cells fail to undertake α-catenin-driven actin cytoskeletal reorganization and adhesive maturation and exhibit changes that resemble epithelial-to-mesenchymal transition (EMT). Remarkably, these alterations and defective terminal differentiation are reversed upon depletion of EMT-promoting transcriptional factor Zeb1. Collectively, our findings reveal Ovol-Zeb1-α-catenin sequential repression and highlight Ovol1 and Ovol2 as gatekeepers of epithelial adhesion and differentiation by inhibiting progenitor-like traits and epithelial plasticity.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/metabolismo , Células Epidérmicas , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Citoesqueleto de Actina/metabolismo , Animales , Adhesión Celular , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias/citología , Epidermis/embriología , Epidermis/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Uniones Intercelulares/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , alfa Catenina/metabolismo
6.
Dev Cell ; 29(1): 59-74, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24735879

RESUMEN

Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition [EMT]). However, how epithelial plasticity is kept in check in epithelial cells during tissue development and regeneration remains to be fully understood. Here we show that restricting the EMT of mammary epithelial cells by transcription factor Ovol2 is required for proper morphogenesis and regeneration. Deletion of Ovol2 blocks mammary ductal morphogenesis, depletes stem and progenitor cell reservoirs, and leads epithelial cells to undergo EMT in vivo to become nonepithelial cell types. Ovol2 directly represses myriad EMT inducers, and its absence switches response to TGF-ß from growth arrest to EMT. Furthermore, forced expression of the repressor isoform of Ovol2 is able to reprogram metastatic breast cancer cells from a mesenchymal to an epithelial state. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity in development and cancer.


Asunto(s)
Transición Epitelial-Mesenquimal , Glándulas Mamarias Animales/crecimiento & desarrollo , Morfogénesis , Regeneración , Factores de Transcripción/metabolismo , Animales , Reprogramación Celular , Inducción Embrionaria , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/metabolismo , Ratones , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...