Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Curr Microbiol ; 79(12): 363, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253492

RESUMEN

Here we investigate the faecal microbiome of wild European badgers Meles meles using samples collected at post-mortem as part of the All Wales Badger Found Dead study. This is the first published characterisation of the badger microbiome. We initially undertook a sex-matched age comparison between the adult and cub microbiomes, based on sequencing the V3-V4 region of the 16S rRNA gene. Analysis used the QIIME 2 pipeline utilising DADA2 and the Silva database for taxonomy assignment. Fusobacteria appeared to be more abundant in the microbiomes of the cubs than the adults although no significant difference was seen in alpha or beta diversity between the adult and cub badger microbiomes. Comparisons were also made against other wild, omnivorous, mammals' faecal microbiomes using publicly available data. Significant differences were seen in both alpha and beta diversity between the microbiomes from different species. As a wildlife species of interest to the disease bovine tuberculosis, knowledge of the faecal microbiome could assist in identification of infected badgers. Our work here suggests that, if comparisons were made between the faeces of bTB infected and non-infected badgers, age may not have a significant impact on the microbiome.


Asunto(s)
Microbiota , Mustelidae , Tuberculosis Bovina , Animales , Bovinos , Heces/microbiología , Mustelidae/microbiología , ARN Ribosómico 16S/genética , Tuberculosis Bovina/microbiología
2.
Tuberculosis (Edinb) ; 136: 102235, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35952489

RESUMEN

OBJECTIVES: Improved bovine tuberculosis (bTB) diagnostics with higher sensitivity and specificity are urgently required. A better understanding of the peripheral blood transcriptional response of Mycobacterium bovis-infected animals after bovine purified protein derivative (PPD-b) stimulation of whole blood-an important component of current bTB diagnostics-will provide new information for development of better diagnostics. METHODS: RNA sequencing (RNA-seq) was used to study the peripheral blood transcriptome after stimulation with PPD-b across four time points (-1 wk pre-infection, and +1 wk, +2 wk, and +10 wk post-infection) from a 14-week M. bovis infection time course experiment with ten age-matched Holstein-Friesian cattle. RESULTS: In vitro PPD-b stimulation of peripheral blood from M. bovis-infected and non-infected cattle elicited a strong transcriptional response. Comparison of PPD-b stimulated, and unstimulated samples revealed higher expression of genes encoding cytokine receptors, transcription factors, and interferon-inducible proteins. Lower expression was seen for genes encoding proteins involved in antimicrobial activity, C-type lectin receptors, inhibition of signal transduction, and genes encoding metal ion transporters. CONCLUSIONS: A transcriptional signature associated with the peripheral blood response to PPD-b stimulation consisting of 170 genes was identified exclusively in the post-infection time points. Therefore, this represents a panel of potential biomarkers of M. bovis infection.


Asunto(s)
Antiinfecciosos , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Bovina , Animales , Antígenos Bacterianos , Biomarcadores , Bovinos , Interferones , Lectinas Tipo C , Receptores de Citocinas , Factores de Transcripción , Transcriptoma , Tuberculina , Tuberculosis Bovina/diagnóstico , Tuberculosis Bovina/genética
3.
Metabolomics ; 18(8): 61, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896834

RESUMEN

INTRODUCTION: Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB) in cattle, represents a major disease burden to UK cattle farming, with considerable costs associated with its control. The European badger (Meles meles) is a known wildlife reservoir for bTB and better knowledge of the epidemiology of bTB through testing wildlife is required for disease control. Current tests available for the diagnosis of bTB in badgers are limited by cost, processing time or sensitivities. MATERIALS AND METHODS: We assessed the ability of flow infusion electrospray-high-resolution mass spectrometry (FIE-HRMS) to determine potential differences between infected and non-infected badgers based on thoracic blood samples obtained from badgers found dead in Wales. Thoracic blood samples were autoclaved for handling in a containment level 2 (CL2) hazard laboratory. RESULTS: Here we show the major differences associated with with M. bovis infection were changes to folate, pyrimidine, histidine, glycerophospholipid and phosphonate metabolism. CONCLUSIONS: Our studies have indicated differences in the metabolomic signature of badgers found dead in relation to their infection status, suggesting metabolomics could hold potential for developing novel diagnostics for bTB in badgers. As well as highlighting a potential way to handle samples containing a highly pathogenic agent at CL2 for metabolomics studies.


Asunto(s)
Mustelidae , Mycobacterium bovis , Tuberculosis Bovina , Animales , Bovinos , Metabolómica , Mustelidae/microbiología , Proyectos Piloto , Tuberculosis Bovina/diagnóstico , Tuberculosis Bovina/epidemiología , Tuberculosis Bovina/microbiología
4.
mBio ; 13(4): e0067222, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862770

RESUMEN

Tuberculosis has severe impacts on both humans and animals. Understanding the genetic basis of survival of both Mycobacterium tuberculosis, the human-adapted species, and Mycobacterium bovis, the animal-adapted species, is crucial to deciphering the biology of both pathogens. There are several studies that identify the genes required for survival of M. tuberculosis in vivo using mouse models; however, there are currently no studies probing the genetic basis of survival of M. bovis in vivo. In this study, we utilize transposon insertion sequencing in M. bovis AF2122/97 to determine the genes required for survival in cattle. We identify genes encoding established mycobacterial virulence functions such as the ESX-1 secretion system, phthiocerol dimycocerosate (PDIM) synthesis, mycobactin synthesis, and cholesterol catabolism that are required in vivo. We show that, as in M. tuberculosis H37Rv, phoPR is required by M. bovis AF2122/97 in vivo despite the known defect in signaling through this system. Comparison to studies performed in species that are able to use carbohydrates as an energy source, such as M. bovis BCG and M. tuberculosis, suggests that there are differences in the requirement for genes involved in cholesterol import (mce4 operon) and oxidation (hsd). We report a good correlation with existing mycobacterial virulence functions but also find several novel virulence factors, including genes involved in protein mannosylation, aspartate metabolism, and glycerol-phosphate metabolism. These findings further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause tuberculosis and provide insight for the development of novel diagnostics and therapeutics. IMPORTANCE This is the first report of the genetic requirements of an animal-adapted member of the Mycobacterium tuberculosis complex (MTBC) in a natural host. M. bovis has devastating impacts on cattle, and bovine tuberculosis is a considerable economic, animal welfare, and public health concern. The data highlight the importance of mycobacterial cholesterol catabolism and identify several new virulence factors. Additionally, the work informs the development of novel differential diagnostics and therapeutics for TB in both human and animal populations.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Bovina , Tuberculosis , Animales , Bovinos , Colesterol/metabolismo , Humanos , Ratones , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculosis Bovina/genética , Tuberculosis Bovina/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
5.
Metabolomics ; 18(5): 30, 2022 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-35524831

RESUMEN

INTRODUCTION: The European badger (Meles meles) is a known wildlife reservoir for bovine tuberculosis (bTB) and a better understanding of the epidemiology of bTB in this wildlife species is required for disease control in both wild and farmed animals. Flow infusion electrospray-high-resolution mass spectrometry (FIE-HRMS) may potentially identify novel metabolite biomarkers based on which new, rapid, and sensitive point of care tests for bTB infection could be developed. OBJECTIVES: In this foundational study, we engaged on assessing the baseline metabolomic variation in the non-bTB infected badger population ("metabotyping") across Wales. METHODS: FIE-HRMS was applied on thoracic fluid samples obtained by post-mortem of bTB negative badgers (n = 285) which were part of the Welsh Government 'All Wales Badger Found Dead' study. RESULTS: Using principal component analysis and partial least squares-discriminant analyses, the major sources of variation were linked to sex, and to a much lesser extent age, as indicated by tooth wear. Within the female population, variation was seen between lactating and non-lactating individuals. No significant variation linked to the presence of bite wounds, obvious lymphatic lesions or geographical region of origin was observed. CONCLUSION: Future metabolomic work when making comparisons between bTB infected and non-infected badger samples will only need be sex-matched and could focus on males only, to avoid lactation bias.


Asunto(s)
Mustelidae , Tuberculosis Bovina , Animales , Animales Salvajes , Bovinos , Femenino , Humanos , Lactancia , Masculino , Metabolómica , Tuberculosis Bovina/epidemiología
6.
Front Vet Sci ; 8: 734087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869715

RESUMEN

Eradication of bovine tuberculosis (bTB) continues to be a worldwide challenge. The lack of reliable vaccines dampens the control and eradication programs of Mycobacterium bovis infection and spread. Selection and breeding of cattle resistant to M. bovis infection would greatly enhance the effectiveness of bTB eradication programs. Here, we have evaluated the potential of serum proteins as biomarkers of cattle resistance to bTB in Holstein-Friesian cows, 6-8-year-old, born and raised in similar conditions in herds with bTB prevalence >30%. Serum proteins obtained from uninfected cows (bTB-resistant; R) were compared to those from infected cows (bTB-susceptible; S), defined by a negative or positive bTB diagnosis, respectively. bTB diagnosis included: (i) single intradermal (caudal fold) tuberculin test, (ii) whole blood IFN-gamma test, (iii) gross visible lesions in lymph nodes and lungs by inspection at the abattoir, and (iv) a bacteriological culture for M. bovis. Using 2D-GE and LC-ESI-MS/MS, we found higher expression levels of primary amine oxidase (AO), complement component 5 (C5), and serotransferrin (TF) in R cattle than S cattle. In-house developed and standardized ELISAs for these novel biomarkers showed the best sensitivities of 72, 77, 77%, and specificities of 94, 94, 83%, for AO, C5, and TF, respectively. AUC-ROC (95% CI) values of 0.8935 (0.7906-0.9964), 0.9290 (0.8484-1.010), and 0.8580 (0.7291-0.9869) were obtained at cut-off points of 192.0, 176.5 ng/ml, and 2.1 mg/ml for AO, C5, and TF, respectively. These proteins are involved in inflammatory/immunomodulatory responses to infections and may provide a novel avenue of research to determine the mechanisms of protection against bTB. Overall, our results indicate that these proteins could be novel biomarkers to help identify cattle resistant to bTB, which in turn could be used to strengthen the effectiveness of existing eradication programs against bTB.

7.
Metabolites ; 11(11)2021 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-34822384

RESUMEN

Johne's disease, caused by Mycobacterium avium subsp. paratuberculosis (MAP), causes weight loss, diarrhoea, and reduced milk yields in clinically infected cattle. Asymptomatic, subclinically infected cattle shed MAP bacteria but are frequently not detected by diagnostic tests. Herein, we compare the metabolite profiles of sera from subclinically infected Holstein-Friesian heifers and antibody binding to selected MAP antigens. The study used biobanked serum samples from 10 naturally MAP-infected and 10 control heifers, sampled monthly from ~1 to 19 months of age. Sera were assessed using flow infusion electrospray-high-resolution mass spectrometry (FIE-HRMS) on a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer for high-throughput, sensitive, non-targeted metabolite fingerprinting. Partial least-squares discriminant analyses (PLS-DA) and hierarchical cluster analysis (HCA) of the data discriminated between naturally MAP-infected and control heifers. In total, 33 metabolites that differentially accumulated in naturally MAP-infected heifers compared to controls were identified. Five were significantly elevated within MAP-infected heifers throughout the study, i.e., leukotriene B4, bicyclo prostaglandin E2 (bicyclo PGE2), itaconic acid, 2-hydroxyglutaric acid and N6-acetyl-L-lysine. These findings highlight the potential of metabolomics in the identification of novel MAP diagnostic markers and particular biochemical pathways, which may provide insights into the bovine immune response to MAP.

8.
Front Vet Sci ; 8: 662002, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124223

RESUMEN

Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at -1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the -1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection.

9.
PLoS Pathog ; 17(3): e1009410, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720986

RESUMEN

The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Macrófagos/microbiología , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis/microbiología , Tropismo Viral/fisiología , Animales , Bovinos , Células Gigantes , Humanos
10.
Front Vet Sci ; 8: 760717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35004921

RESUMEN

Members of the Mycobacterium tuberculosis complex (MTBC) show distinct host adaptations, preferences and phenotypes despite being >99% identical at the nucleic acid level. Previous studies have explored gene expression changes between the members, however few studies have probed differences in gene essentiality. To better understand the functional impacts of the nucleic acid differences between Mycobacterium bovis and Mycobacterium tuberculosis, we used the Mycomar T7 phagemid delivery system to generate whole genome transposon libraries in laboratory strains of both species and compared the essentiality status of genes during growth under identical in vitro conditions. Libraries contained insertions in 54% of possible TA sites in M. bovis and 40% of those present in M. tuberculosis, achieving similar saturation levels to those previously reported for the MTBC. The distributions of essentiality across the functional categories were similar in both species. 527 genes were found to be essential in M. bovis whereas 477 genes were essential in M. tuberculosis and 370 essential genes were common in both species. CRISPRi was successfully utilised in both species to determine the impacts of silencing genes including wag31, a gene involved in peptidoglycan synthesis and Rv2182c/Mb2204c, a gene involved in glycerophospholipid metabolism. We observed species specific differences in the response to gene silencing, with the inhibition of expression of Mb2204c in M. bovis showing significantly less growth impact than silencing its orthologue (Rv2182c) in M. tuberculosis. Given that glycerophospholipid metabolism is a validated pathway for antimicrobials, our observations suggest that target vulnerability in the animal adapted lineages cannot be assumed to be the same as the human counterpart. This is of relevance for zoonotic tuberculosis as it implies that the development of antimicrobials targeting the human adapted lineage might not necessarily be effective against the animal adapted lineage. The generation of a transposon library and the first reported utilisation of CRISPRi in M. bovis will enable the use of these tools to further probe the genetic basis of survival under disease relevant conditions.

11.
Transbound Emerg Dis ; 68(6): 3360-3365, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33249779

RESUMEN

Mycobacterium bovis is the main cause of bovine tuberculosis (BTB) in cattle and can also infect humans. Zebu cattle are considered more resistant to some infectious diseases compared with Holstein-Friesian (HF) cattle, including BTB. However, epidemiological studies may not take into account usage differences of the two types of cattle. HF cattle may suffer greater metabolic stress due to their more or less exclusive dairy use, whereas Zebu cattle are mainly used for beef production. In experiments conducted so far, the number of animals has been too small to draw statistically robust conclusions on the resistance differences between these cattle breeds. Here, we used a BCG challenge model to compare the ability of naïve and vaccinated Zebu and HF cattle to control/kill mycobacteria. Young cattle of both breeds with similar ages were housed in the same accommodation for the duration of the experiment. After correcting for multiple comparisons, we found no difference between naïve HF and Zebu (ρ = 0.862) cattle. However, there was a trend for vaccinated HF cattle to have lower cfu numbers than non-vaccinated HF cattle (ρ = 0.057); no such trend was observed between vaccinated and non-vaccinated Zebu cattle (ρ = 0.560). Evaluation of antigen-specific IFNγ secretion by PBMC indicated that Zebu and HF cattle differed in their response to mycobacteria. Thus, whilst there may be difference in immune responses, our data indicate that with the number of animals included in the study and under the conditions used in this work, we were unable to measure any differences between Zebu and HF cattle in the overall control of mycobacteria. Whilst determination of different susceptibilities between Zebu and HF cattle using the BCG challenge model will require larger numbers of animals than the number of animals used in this experiment, these data should inform future experiments.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium bovis , Tuberculosis Bovina , Animales , Vacuna BCG , Bovinos , Inmunidad , Interferón gamma , Leucocitos Mononucleares , Tuberculosis Bovina/epidemiología
12.
Vaccines (Basel) ; 8(4)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33322064

RESUMEN

Vaccination has been proposed as a supplementary tool for the control of tuberculosis in livestock. The long-term immunogenicity elicited by bacillus Calmette-Guerin (BCG) and the efficacy of revaccination were investigated in thirty goat kids distributed into three groups: unvaccinated controls, BCG (vaccinated at week 0) and BCG-BCG (vaccinated at weeks 0 and 56). Sixty-four weeks after the first vaccination, all animals were challenged with Mycobacterium caprae and examined post-mortem (pathology and bacterial load) at week 73. Antigen-specific interferon-gamma (IFN-γ) release was measured throughout the experiment. At week 59, peripheral blood mononuclear cells were stained for CD4, CD45RO and IFN-γ to determine the presence of antigen-specific cells secreting IFN-γ. The BCG-BCG group showed reductions in rectal temperatures, M. caprae DNA load in pulmonary lymph nodes (LN), the volume of lesions in pulmonary LN, mineralization in lungs, and higher weight gains compared to unvaccinated controls. IFN-γ responses were undetectable from 32 weeks after primary vaccination until revaccination, when the BCG-BCG group showed detectable IFN-γ production and a greater percentage of antigen-specific CD4+CD45RO+IFNγ+ and CD4-CD45RO+IFNγ+ cells compared to the BCG and control groups, which may be an indicator of the mechanisms of protection. Thus, re-vaccination of goats with BCG appears to prolong protection against infection with M. caprae.

13.
Tuberculosis (Edinb) ; 124: 101979, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32814303

RESUMEN

Bovine tuberculosis is an important animal health problem and the predominant cause of zoonotic tuberculosis worldwide. It results in serious economic burden due to losses in productivity and the cost of control programmes. Control could be greatly improved by the introduction of an efficacious cattle vaccine but the most likely candidate, BCG, has several limitations including variable efficacy. Augmentation of BCG with a subunit vaccine booster has been shown to increase protection but the selection of antigens has hitherto been left largely to serendipity. In the present study, we take a rational approach to identify the protective antigens of BCG, selecting a BCG transposon mutant library in naïve and BCG-vaccinated cattle. Ten mutants had increased relative survival in vaccinated compared to naïve cattle, consistent with loss of protective antigen targets making the mutants less visible to the BCG immune response. The immunogenicity of three putative protective antigens, BCG_0116, BCG_0205 (YrbE1B) and BCG_1448 (PPE20) was investigated using peptide pools and PBMCs from BCG vaccinated cattle. BCG vaccination induced PBMC to release elevated levels of IP10, IL-17a and IL-10 in response to all three antigens. Taken together, the data supports the further study of these antigens for use in subunit vaccines.


Asunto(s)
Antígenos Bacterianos/administración & dosificación , Antígenos Bacterianos/genética , Vacuna BCG/administración & dosificación , Inmunogenicidad Vacunal , Leucocitos Mononucleares/inmunología , Mycobacterium tuberculosis/genética , Tuberculosis Bovina/prevención & control , Vacunación/veterinaria , Animales , Antígenos Bacterianos/inmunología , Vacuna BCG/inmunología , Bovinos , Citocinas/inmunología , Citocinas/metabolismo , Elementos Transponibles de ADN , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/microbiología , Mutación , Mycobacterium tuberculosis/inmunología , Tuberculosis Bovina/inmunología , Tuberculosis Bovina/metabolismo , Tuberculosis Bovina/microbiología
14.
Front Microbiol ; 11: 1420, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32714308

RESUMEN

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a chronic zoonotic disease where host genetics is thought to contribute to susceptibility or resistance. One of the genes implicated is the SLC11A1 gene, that encodes for the natural resistance-associated macrophage protein 1 (NRAMP1). The aim of this study was to identify SLC11A1 polymorphisms and to investigate any resulting functional differences in NRAMP1 expression that might be correlated with resistance/susceptibility to M. bovis infection. Sequencing of the SLC11A1 gene in cDNA isolated from Brown Swiss, Holstein Friesian, and Sahiwal cattle identified five single nucleotide polymorphisms (SNPs) in the coding region, but only one of these (SNP4, c.1066C>G, rs109453173) was present in all three cattle breeds and therefore warranted further investigation. Additionally, variations of 10, 11, and 12 GT repeats were identified in a microsatellite (MS1) in the SLC11A1 3'UTR. Measurement of NRAMP1 expression in bovine macrophages by ELISA showed no differences between cells generated from the different breeds. Furthermore, variations in the length of the MS1 microsatellite did not impact on NRAMP1 protein expression as analyzed by luciferase reporter assay. However, further analysis of the ELISA data identified that the presence of the alternative G allele at SNP4 was associated with increased expression of NRAMP1 in bovine macrophages. Since NRAMP1 has been shown to influence the survival of intracellular pathogens such as M. bovis through the sequestering of iron, it is possible that cattle expressing the alternative G allele might have an increased resistance to bTB through increased NRAMP1 expression in their macrophages.

15.
Vaccine ; 38(5): 1241-1248, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31759733

RESUMEN

In the absence of biomarkers of protective immunity, newly developed vaccines against bovine tuberculosis need to be evaluated in virulent Mycobacterium bovis challenge experiments, which require the use of expensive and highly in demand Biological Safety Level 3 (BSL3) animal facilities. The recently developed bovine BCG challenge model offers a cheaper and faster way to test new vaccine candidates and additionally reduces the severity of the challenge compared to virulent M. bovis challenge in line with the remits of the NC3Rs. In this work we sought to establish the sensitivity of the BCG challenge model by testing a prime boost vaccine regimen that previously increased protection over BCG alone against M. bovis challenge. All animals, except the control group, were vaccinated subcutaneously with BCG Danish, and half of those were then boosted with a recombinant adenoviral vector expressing Antigen 85A, Ad85A. All animals were challenged with BCG Tokyo into the prescapular lymph node and the bacterial load within the lymph nodes was established. All vaccinated animals, independent of the vaccination regimen, cleared BCG significantly faster from the lymph node than control animals, suggesting a protective effect. There was however, no difference between the BCG and the BCG-Ad85A regimens. Additionally, we analysed humoral and cellular immune responses taken prior to challenge for possible predictors of protection. Cultured ELISpot identified significantly higher IFN-É£ responses in protected vaccinated animals, relative to controls, but not in unprotected vaccinated animals. Furthermore, a trend for protected animals to produce more IFN-É£ by quantitative PCR and intracellular staining was observed. Thus, this model can also be an attractive alternative to M. bovis challenge models for the discovery of protective biomarkers.


Asunto(s)
Vacuna BCG/administración & dosificación , Inmunización Secundaria/veterinaria , Tuberculosis Bovina , Animales , Carga Bacteriana , Bovinos , Interferón gamma/inmunología , Ganglios Linfáticos/microbiología , Mycobacterium bovis/inmunología , Tuberculosis Bovina/prevención & control , Vacunación/veterinaria
16.
Sci Rep ; 9(1): 17791, 2019 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-31780694

RESUMEN

Bovine tuberculosis (BTB) caused by Mycobacterium bovis remains a major problem in both the developed and developing countries. Control of BTB in the UK is carried out by test and slaughter of infected animals, based primarily on the tuberculin skin test (PPD). Vaccination with the attenuated strain of the M. bovis pathogen, BCG, is not used to control bovine tuberculosis in cattle at present, due to its variable efficacy and because it interferes with the PPD test. Diagnostic tests capable of Differentiating Infected from Vaccinated Animals (DIVA) have been developed that detect immune responses to M. bovis antigens absent in BCG; but these are too expensive and insufficiently sensitive to be used for BTB control worldwide. To address these problems we aimed to generate a synergistic vaccine and diagnostic approach that would permit the vaccination of cattle without interfering with the conventional PPD-based surveillance. The approach was to widen the pool of M. bovis antigens that could be used as DIVA targets, by identifying antigenic proteins that could be deleted from BCG without affecting the persistence and protective efficacy of the vaccine in cattle. Using transposon mutagenesis we identified genes that were essential and those that were non-essential for persistence in bovine lymph nodes. We then inactivated selected immunogenic, but non-essential genes in BCG Danish to create a diagnostic-compatible triple knock-out ΔBCG TK strain. The protective efficacy of the ΔBCG TK was tested in guinea pigs experimentally infected with M. bovis by aerosol and found to be equivalent to wild-type BCG. A complementary diagnostic skin test was developed with the antigenic proteins encoded by the deleted genes which did not cross-react in vaccinated or in uninfected guinea pigs. This study demonstrates the functionality of a new and improved BCG strain which retains its protective efficacy but is diagnostically compatible with a novel DIVA skin test that could be implemented in control programmes.


Asunto(s)
Vacuna BCG/inmunología , Mycobacterium bovis/inmunología , Tuberculosis Bovina/diagnóstico , Tuberculosis/diagnóstico , Tuberculosis/veterinaria , Animales , Vacuna BCG/genética , Bovinos , Reacciones Cruzadas , Técnicas de Inactivación de Genes , Cobayas , Macrófagos/metabolismo , Macrófagos/microbiología , Mycobacterium bovis/genética , Transducción Genética , Tuberculina/genética , Tuberculina/inmunología , Prueba de Tuberculina , Tuberculosis/microbiología , Tuberculosis Bovina/microbiología , Vacunación , Vacunas Atenuadas/inmunología
17.
Front Immunol ; 10: 1317, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31244856

RESUMEN

Bacillus Calmette Guérin (BCG) is the only currently available vaccine against tuberculosis (TB), but it confers incomplete and variable protection against pulmonary TB in humans and bovine TB (bTB) in cattle. Insights into the immune response induced by BCG offer an underexploited opportunity to gain knowledge that may inform the design of a more efficacious vaccine, which is urgently needed to control these major global epidemics. Humoral immunity in TB and bTB has been neglected, but recent studies supporting a role for antibodies in protection against TB has driven a growing interest in determining their relevance to vaccine development. In this manuscript we review what is known about the humoral immune response to BCG vaccination and re-vaccination across species, including evidence for the induction of specific B cells and antibodies; and how these may relate to protection from TB or bTB. We discuss potential explanations for often conflicting findings and consider how factors such as BCG strain, manufacturing methodology and route of administration influence the humoral response. As novel vaccination strategies include BCG prime-boost regimens, the literature regarding off-target immunomodulatory effects of BCG vaccination on non-specific humoral immunity is also reviewed. Overall, reported outcomes to date are inconsistent, but indicate that humoral responses are heterogeneous and may play different roles in different species, populations, or individual hosts. Further study is warranted to determine whether a new TB vaccine could benefit from the targeting of humoral as well as cell-mediated immunity.


Asunto(s)
Vacuna BCG/inmunología , Animales , Anticuerpos Antibacterianos/biosíntesis , Especificidad de Anticuerpos , Autoanticuerpos/biosíntesis , Linfocitos B/inmunología , Vacuna BCG/administración & dosificación , Vacunas contra el Cáncer/inmunología , Bovinos , Humanos , Hipersensibilidad Inmediata/prevención & control , Inmunidad Humoral , Inmunoglobulina E/biosíntesis , Inmunomodulación , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis Bovina/inmunología , Tuberculosis Bovina/prevención & control , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/prevención & control
18.
BMC Genomics ; 20(1): 431, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-31138110

RESUMEN

BACKGROUND: BCG is the most widely used vaccine of all time and remains the only licensed vaccine for use against tuberculosis in humans. BCG also protects other species such as cattle against tuberculosis, but due to its incompatibility with current tuberculin testing regimens remains unlicensed. BCG's efficacy relates to its ability to persist in the host for weeks, months or even years after vaccination. It is unclear to what degree this ability to resist the host's immune system is maintained by a dynamic interaction between the vaccine strain and its host as is the case for pathogenic mycobacteria. RESULTS: To investigate this question, we constructed transposon mutant libraries in both BCG Pasteur and BCG Danish strains and inoculated them into bovine lymph nodes. Cattle are well suited to such an assay, as they are naturally susceptible to tuberculosis and are one of the few animal species for which a BCG vaccination program has been proposed. After three weeks, the BCG were recovered and the input and output libraries compared to identify mutants with in vivo fitness defects. Less than 10% of the mutated genes were identified as affecting in vivo fitness, they included genes encoding known mycobacterial virulence functions such as mycobactin synthesis, sugar transport, reductive sulphate assimilation, PDIM synthesis and cholesterol metabolism. Many other attenuating genes had not previously been recognised as having a virulence phenotype. To test these genes, we generated and characterised three knockout mutants that were predicted by transposon mutagenesis to be attenuating in vivo: pyruvate carboxylase, a hypothetical protein (BCG_1063), and a putative cyclopropane-fatty-acyl-phospholipid synthase. The knockout strains survived as well as wild type during in vitro culture and in bovine macrophages, yet demonstrated marked attenuation during passage in bovine lymph nodes confirming that they were indeed involved in persistence of BCG in the host. CONCLUSION: These data show that BCG is far from passive during its interaction with the host, rather it continues to employ its remaining virulence factors, to interact with the host's innate immune system to allow it to persist, a property that is important for its protective efficacy.


Asunto(s)
Elementos Transponibles de ADN , Mycobacterium bovis/genética , Animales , Vacuna BCG , Bovinos , Colesterol/metabolismo , Biblioteca de Genes , Genes Bacterianos , Aptitud Genética , Mycobacterium bovis/metabolismo , Oxazoles , Azúcares/metabolismo , Sulfatos/metabolismo , Tuberculosis Bovina/microbiología
19.
Vet Immunol Immunopathol ; 203: 52-56, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30243373

RESUMEN

Bovine tuberculosis (bTB), mainly caused by Mycobacterium bovis (M. bovis), is a major economic disease of livestock worldwide. Vaccination is considered as a potentially sustainable adjunct to the current control strategy. Cattle vaccination with the live attenuated M. bovis bacillus Calmette-Guerin (BCG) confers variable protection; the reasons for this variability are not understood. Indoleamine 2, 3-dioxygenase (IDO), through the catalysis of tryptophan, is thought to have an immunoregulatory role in the immune response to Mycobacterium tuberculosis (M. tuberculosis). In this work, we used immunohistochemistry and digital image analysis to evaluate the presence of IDO in granulomas at different stages of development in cattle that had been BCG-vaccinated or not and then challenged with M. bovis. Our results show that the expression of IDO in granulomas from non-vaccinated M. bovis challenged animals is higher than in granulomas from BCG-vaccinated M. bovis challenged animals. Thus, it is possible that vaccination with BCG prevents the induction of what are thought to be host immunosuppressive pathways by M. bovis, which contribute to pathology during the disease.


Asunto(s)
Vacuna BCG/inmunología , Granuloma/veterinaria , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mycobacterium bovis/inmunología , Tuberculosis Bovina/enzimología , Animales , Vacuna BCG/farmacología , Bovinos , Granuloma/enzimología , Granuloma/inmunología , Granuloma/metabolismo , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/metabolismo , Tuberculosis Bovina/inmunología , Tuberculosis Bovina/metabolismo
20.
Vaccine ; 36(20): 2850-2854, 2018 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-29655632

RESUMEN

There is a need to improve the efficacy of the BCG vaccine against human and bovine tuberculosis. Previous data showed that boosting bacilli Calmette-Guerin (BCG)-vaccinated cattle with a recombinant attenuated human type 5 adenovirally vectored subunit vaccine (Ad5-85A) increased BCG protection and was associated with increased frequency of Ag85A-specific CD4+ T cells post-boosting. Here, the capacity of Ag85A-specific CD4+ T cell lines - derived before and after viral boosting - to interact with BCG-infected macrophages was evaluated. No difference before and after boosting was found in the capacity of these Ag85A-specific CD4+ T cell lines to restrict mycobacterial growth, but the secretion of IL-10 in vitro post-boost increased significantly. Furthermore, cell lines derived post-boost had no statistically significant difference in the secretion of pro-inflammatory cytokines (IL-1ß, IL-12, IFNγ or TNFα) compared to pre-boost lines. In conclusion, the protection associated with the increased number of Ag85A-specific CD4+ T cells restricting mycobacterial growth may be associated with anti-inflammatory properties to limit immune-pathology.


Asunto(s)
Aciltransferasas/inmunología , Antígenos Bacterianos/inmunología , Inmunización Secundaria/métodos , Inflamación/prevención & control , Mycobacterium bovis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Bovina/prevención & control , Aciltransferasas/administración & dosificación , Adenovirus Humanos/genética , Animales , Antígenos Bacterianos/administración & dosificación , Linfocitos T CD4-Positivos/inmunología , Bovinos , Portadores de Fármacos , Inflamación/microbiología , Inflamación/patología , Mycobacterium bovis/crecimiento & desarrollo , Resultado del Tratamiento , Vacunas contra la Tuberculosis/administración & dosificación , Tuberculosis Bovina/microbiología , Tuberculosis Bovina/patología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...