Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Mol Neurobiol ; 44(1): 31, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557942

RESUMEN

Glioblastoma multiforme (GBM) is the most predominant and malignant primary brain tumor in adults. Thymic stromal lymphopoietin (TSLP), a cytokine primarily generated by activated epithelial cells, has recently garnered attention in cancer research. This study was aimed to elucidate the significance of TSLP in GBM cells and its interplay with the immune system, particularly focused on granulocyte neutrophils. Our results demonstrate that the tumor produces TSLP when stimulated with epidermal growth factor (EGF) in both the U251 cell line and the GBM biopsy (GBM-b). The relevance of the TSLP function was evaluated using a 3D spheroid model. Spheroids exhibited increased diameter, volume, and proliferation. In addition, TSLP promoted the generation of satellites surrounding the main spheroids and inhibited apoptosis in U251 treated with temozolomide (TMZ). Additionally, the co-culture of polymorphonuclear (PMN) cells from healthy donors with the U251 cell line in the presence of TSLP showed a reduction in apoptosis and an increase in IL-8 production. TSLP directly inhibited apoptosis in PMN from GBM patients (PMN-p). Interestingly, the vascular endothelial growth factor (VEGF) production was elevated in PMN-p compared with PMN from healthy donors. Under these conditions, TSLP also increased VEGF production, in PMN from healthy donors. Moreover, TSLP upregulated programed death-ligand 1 (PDL-1) expression in PMN cultured with U251. On the other hand, according to our results, the analysis of RNA-seq datasets from Illumina HiSeq 2000 sequencing platform performed with TIMER2.0 webserver demonstrated that the combination of TSLP with neutrophils decreases the survival of the patient. In conclusion, our results position TSLP as a possible new growth factor in GBM and indicate its modulation of the tumor microenvironment, particularly through its interaction with PMN.


Asunto(s)
Glioblastoma , Linfopoyetina del Estroma Tímico , Adulto , Humanos , Células Cultivadas , Citocinas/metabolismo , Neutrófilos/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular
3.
Invest New Drugs ; 40(1): 30-41, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34478029

RESUMEN

Breast cancer is the leading cause of cancer death among women worldwide. For this reason, the development of new therapies is still essential. In this work we have analyzed the antitumor potential of levoglucosenone, a chiral building block derived from the pyrolysis of cellulose-containing materials such as soybean hulls, and three structurally related analogues. Employing human and murine mammary cancer models, we have evaluated the effect of our compounds on cell viability through MTS assay, apoptosis induction by acridine orange/ethidium bromide staining and/or flow cytometry and the loss of mitochondrial potential by tetramethylrhodamine methyl ester staining. Autophagy and senescence induction were also evaluated by Western blot and ß-galactosidase activity respectively. Secreted metalloproteases activity was determined by quantitative zymography. Migratory capacity was assessed by wound healing assays while invasive potential was analyzed using Matrigel-coated transwell chambers. In vivo studies were also performed to evaluate subcutaneous tumor growth and experimental lung colonization. All compounds impaired in vitro proliferation with IC50 values in a range of low micromolar. Apoptosis was identified as the main mechanism responsible for the reduction of monolayer cell content induced by the compounds without detecting modulations of autophagy or senescence processes. Two of the four compounds (levoglucosenone and its brominated variant) were able to modulate in vitro events associated with tumor progression, such as migratory potential, invasiveness, and proteases secretion. Furthermore, tumor volume and metastatic spread were significantly reduced in vivo after the treatment these two compounds. Here, we could obtain from soybean hulls, a material with almost no commercial value, a variety of chemical compounds useful for breast cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/patología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Glucosa/análogos & derivados , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Celulosa/química , Relación Dosis-Respuesta a Droga , Glucosa/química , Glucosa/farmacología , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Carga Tumoral/efectos de los fármacos
5.
Transl Oncol ; 13(11): 100842, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32781368

RESUMEN

Most cancer cells exacerbate the pentose phosphate pathway (PPP) to enhance biosynthetic precursors and antioxidant defenses. Metformin, which is used as a first-line oral drug for the treatment of type 2 diabetes, has been proposed to inhibit the malignant progression of different types of cancers. However, metformin has shown poor efficacy as single agent in several clinical trials. Thus, the aim of the present work was to investigate whether the pharmacological inhibition of G6PDH, the first and rate-limiting enzyme of the PPP, by 6-amino nicotinamide (6-AN) potentiates the antitumoral activity of metformin on different human melanoma cell lines. Our results showed that 6-AN has sensitizing properties to metformin cytotoxicity. The combination of metformin and 6-AN decreased glucose consumption and lactate production, altered the mitochondrial potential and redox balance, and thereby blocked melanoma cell progression, directing cells to apoptosis and necrosis. To our knowledge, this is the first study describing the effect of this combination. Future preclinical studies should be performed to reveal the biological relevance of this finding.

6.
3 Biotech ; 8(8): 341, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30073126

RESUMEN

Feline interferon beta is a cytokine that belongs to the type I IFN family, with antitumor, antiviral and immunomodulatory functions. In this work, recombinant feline interferon beta (rFeIFNß) was expressed in insect larvae that constitute important agronomic plagues. rFeIFNß accumulated in the hemolymph of Spodoptera frugiperda larvae infected with recombinant baculovirus and was purified by Blue-Sepharose chromatography directly from larval homogenates on day 4 post-infection. rFeIFNß was recovered after purification with a specific activity of 1 × 106 IU mg-1. By this method, we obtained 8.9 × 104 IU of purified rFeIFNß per larva. The product was biologically active in vitro, with an antiviral activity of 9.5 × 104 IU mL-1, as well as a potent antitumor activity comparable to that of the commercial FeIFNω. The glycosylation of rFeIFNß was confirmed by peptide-N-glycosidase F digestion. Our findings provide a cost-effective platform for large-scale rFeIFNß production in laboratory research or veterinary medicine applications.

7.
Res Vet Sci ; 114: 461-468, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28802138

RESUMEN

Feline mammary carcinoma (FMC) is a highly aggressive pathology that has been proposed as an interesting model of breast cancer disease, especially for the hormone refractory subgroup. Recently, cancer cell metabolism has been described as a hallmark of cancer cells. Here, we investigate the effects and mechanism of metabolic modulation by metformin (MET, anti-diabetic drug), 2-deoxyglucose (2DG, hexokinase inhibitor) or a combination of both drugs, MET/2DG on two established FMC cells lines: AlRB (HER2 (3+) and Ki67<5%) and AlRATN (HER2 (-) and Ki67>15%). We found that treatments significantly decreased both FMC cells viability by up to 80%. AlRB resulted more sensitive to 2DG than AlRATN (IC50: 3.15 vs 6.32mM, respectively). The combination of MET/2DG potentiated the effects of the individually added drugs on FMC cells. In addition, MET/2DG caused an increased in intracellular oxidants, autophagic vesicles and completely inhibited colony formation. Conversely, only MET significantly altered plasma membrane integrity, presented late apoptotic/necrotic cells and increased both glucose consumption and lactate concentration. Our results support further studies to investigate the potential use of this metabolic modulation approach in a clinical veterinary setting.


Asunto(s)
Antineoplásicos/farmacología , Desoxiglucosa/metabolismo , Metabolismo Energético/efectos de los fármacos , Neoplasias Mamarias Animales/metabolismo , Metformina/farmacología , Animales , Gatos , Línea Celular Tumoral/metabolismo , Supervivencia Celular/efectos de los fármacos
8.
Cytokine ; 84: 47-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27236354

RESUMEN

Progress in comparative oncology promises advances in clinical cancer treatments for both companion animals and humans. In this context, feline mammary carcinoma (FMC) cells have been proposed as a suitable model to study human breast cancer. Based on our previous data about the advantages of using type I interferon gene therapy over the respective recombinant DNA derived protein, the present work explored the effects of feline interferon-ω gene (fIFNω) transfer on FMC cells. Three different cell variants derived from a single spontaneous highly aggressive FMC tumor were successfully established and characterized. Lipofection of the fIFNω gene displayed a significant cytotoxic effect on the three cell variants. The extent of the response was proportional to ROS generation, mitochondrial membrane potential disruption and calcium uptake. Moreover, a lower sensitivity to the treatment correlated with a higher malignant phenotype. Our results suggest that fIFNω lipofection could offer an alternative approach in veterinary oncology with equal or superior outcome and with less adverse effects than recombinant fIFNω therapy.


Asunto(s)
Interferón Tipo I/metabolismo , Neoplasias Mamarias Animales/metabolismo , Potencial de la Membrana Mitocondrial/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Calcio/metabolismo , Gatos , Línea Celular Tumoral , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...