Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Entomol ; 51(1): 196-203, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-34729590

RESUMEN

Cultivar resistance is a key management strategy for the sugarcane borer, Diatraea saccharalis (F.), the primary pest in Louisiana sugarcane, but mechanisms of resistance are not well understood. This research evaluated the potential mechanisms of cultivar resistance to D. saccharalis among commercially produced sugarcane cultivars and experimental lines through three field screenings, two greenhouse experiments, and one diet incorporation assay. The resistant standards HoCP 85-845, HoCP 04-838, and L 01-299 were among the cultivars with the lowest D. saccharalis injury levels in both field and greenhouse trials. Cultivars HoCP 00-950 and L 12-201 were among the most heavily injured in both trials. Differences in oviposition among cultivars in the greenhouse choice study were not detected, suggesting adult preference is not a key factor in resistance. This was also supported by the no-choice greenhouse experiment in which up to 9-fold differences in neonate establishment among cultivars were detected. Larval injury among cultivars in greenhouse experiments was consistent with field studies suggesting traits that affect neonate establishment (e.g., rind hardness) help to confer resistance in the field. In the diet incorporation assay, lower larval weights and longer time to pupation were observed on resistant cultivar Ho 08-9003, but no differences were found among current commercial cultivars. Continuous evaluation of cultivar resistance to D. saccharalis is important in developing effective integrated pest management strategies for this pest. More research into plant characteristics (e.g., leaf sheath tightness and pubescence) associated with resistance is needed.


Asunto(s)
Mariposas Nocturnas , Saccharum , Animales , Femenino , Larva , Louisiana , Oviposición , Control de Plagas
2.
J Insect Sci ; 20(5)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33119749

RESUMEN

Every year, the Student Debates Subcommittee (SDS) of the Student Affairs Committee (SAC) for the annual Entomological Society of America (ESA) meeting organizes the Student Debates. This year, the SAC selected topics based on their synergistic effect or ability to ignite exponential positive change when addressed as a whole. For the 2019 Student Debates, the SAC SDS identified these topic areas for teams to debate and unbiased introduction speakers to address: 1) how to better communicate science to engage the public, particularly in the area of integrated pest management (IPM), 2) the influential impacts of climate change on agriculturally and medically relevant insect pests, and 3) sustainable agriculture techniques that promote the use of IPM to promote food security. Three unbiased introduction speakers gave a foundation for our audience to understand each debate topic, while each of six debate teams provided a strong case to support their stance or perspective on a topic. Debate teams submitted for a competitive spot for the annual ESA Student Debates and trained for the better part of a year to showcase their talents in presenting logical arguments for a particular topic. Both the debate teams and unbiased introduction speakers provided their insight toward a better understanding of the complexities of each topic and established a foundation to delve further into the topics of science advocacy and communication, climate change, and the many facets of integrated pest management.


Asunto(s)
Cambio Climático , Difusión de la Información , Control de Plagas , Comunicación
3.
J Insect Sci ; 19(4)2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268545

RESUMEN

The 2018 student debates of the Entomological Society of America were held at the Joint Annual Meeting for the Entomological Societies of America, Canada, and British Columbia in Vancouver, BC. Three unbiased introductory speakers and six debate teams discussed and debated topics under the theme 'Entomology in the 21st Century: Tackling Insect Invasions, Promoting Advancements in Technology, and Using Effective Science Communication'. This year's debate topics included: 1) What is the most harmful invasive insect species in the world? 2) How can scientists diffuse the stigma or scare factor surrounding issues that become controversial such as genetically modified organisms, agricultural biotechnological developments, or pesticide chemicals? 3) What new/emerging technologies have the potential to revolutionize entomology (other than Clustered Regularly Interspaced Short Palindromic Repeats)? Introductory speakers and debate teams spent approximately 9 mo preparing their statements and arguments and had the opportunity to share this at the Joint Annual Meeting with an engaged audience.


Asunto(s)
Entomología/tendencias , Insectos , Animales , Biotecnología , Especies Introducidas
4.
Pest Manag Sci ; 75(12): 3193-3199, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30950203

RESUMEN

BACKGROUND: For the past decade, insecticidal seed treatment has been the most widely used control tactic against insect pests of rice (Oryza sativa L.) in the USA. Seed treatments are used primarily to control the most economically important early-season pest of rice, the rice water weevil (Lissorhoptrus oryzophilus Kuschel). This study was conducted to evaluate the efficacy of reduced rates of chlorantraniliprole seed treatment against the rice water weevil, fall armyworm (Spodoptera frugiperda J.E. Smith), and sugarcane borer (Diatraea saccharalis F.) under field and laboratory conditions. Concentrations of chlorantraniliprole in plant tissues were determined at vegetative and reproductive developmental stages of rice plants. RESULTS: Chlorantraniliprole seed treatment reduced the densities of rice water weevil larvae relative to non-treated controls even at rates 75% lower than the label rate. Increased mortality of fall armyworm larvae was observed at reduced seed treatment rates relative to a non-treated control. Chlorantraniliprole seed treatment increased the mortality of sugarcane borer larvae at all rates relative to controls and the mortality was consistently higher in larvae that were fed stems from treated plants at the vegetative developmental stage than larvae that were fed stems from plants at the reproductive stage. Concentrations of chlorantraniliprole in plant tissues increased with seed treatment rate and decreased with plant age. CONCLUSION: This study has shown that reduced chlorantraniliprole seed treatment rates can provide adequate control against the rice water weevil, fall armyworm, and sugarcane borer, particularly at early developmental stages of rice plants. © 2019 Society of Chemical Industry.


Asunto(s)
Control de Insectos , Insecticidas , Mariposas Nocturnas , Oryza/crecimiento & desarrollo , Gorgojos , ortoaminobenzoatos , Animales , Relación Dosis-Respuesta a Droga , Larva/crecimiento & desarrollo , Mariposas Nocturnas/crecimiento & desarrollo , Semillas , Spodoptera/crecimiento & desarrollo , Gorgojos/crecimiento & desarrollo
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 4363-4367, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946834

RESUMEN

As the number of individuals developing glaucoma is increasing, researchers and ophthalmologists are exploring new approaches to monitor intraocular pressure, which is a critical measurement for glaucoma detection. Current monitoring methods, such as implantable pressure sensors and wearable contact lenses with sensors, are being explored in eye research clinics. However, these systems currently lack in providing 24 hours data through a practical platform for large-scale use. This paper presents a novel method that provides constant measurements of the scleral strain, which is correlated with the change of intraocular pressure, using a nanofabricated discrete resistor array implant sensor. A preliminary bench-top test was performed using the sensor, and it showed that the nanofabricated 1.6 mm by 2.7 mm resistor array exhibits discrete sensing levels at increments of 41 ohms as a fixture needle traversed approximately half of the array. Though the nanosensor is in the prototype developing stage, it promises a new modality for constant, remote, and around the clock glaucoma monitoring.


Asunto(s)
Lentes de Contacto , Glaucoma , Presión Intraocular , Técnicas Biosensibles , Humanos , Monitoreo Fisiológico , Tonometría Ocular
6.
Plants (Basel) ; 6(3)2017 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-28805707

RESUMEN

Silicon soil amendment has been shown to enhance plant defenses against insect pests. Rice is a silicon-accumulating graminaceous plant. In the southern United States, the rice water weevil and stem borers are important pests of rice. Current management tactics for these pests rely heavily on the use of insecticides. This study evaluated the effects of silicon amendment when combined with current management tactics for these rice insect pests in the field. Field experiments were conducted from 2013 to 2015. Rice was drill-planted in plots subjected to factorial combinations of variety (conventional and hybrid), chlorantraniliprole seed treatment (treated and untreated), and silicon amendment (treated and untreated). Silicon amendment reduced densities of weevil larvae on a single sampling date in 2014, but did not affect densities of whiteheads caused by stem borers. In contrast, insecticidal seed treatment strongly reduced densities of both weevil larvae and whiteheads. Higher densities of weevil larvae were also observed in the hybrid variety in 2014, while higher incidences of whiteheads were observed in the conventional variety in 2014 and 2015. Silicon amendment improved rice yields, as did chlorantraniliprole seed treatment and use of the hybrid variety.

7.
Integr Zool ; 12(6): 438-445, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27992109

RESUMEN

Rodents are globally important pre-harvest pests of rice. In Southeast Asia, rodent damage to growing rice crops is commonly concentrated towards the center of rice fields, away from the field edge, resulting in a clear pattern known as the "stadium effect." To further understand this behavior of rodent pests and to develop recommendations for future research and management, we examined the relation between giving-up densities (GUDs) and damage patterns. In Tanay, Luzon, Philippines, GUD trays containing pieces of coconut in a matrix of sand were placed at 4 different distances from the field edge to quantify the perceived risk of predation in a rice field pest, Rattus tanezumi. GUDs were recorded during a dry and wet season crop at the reproductive and ripening stages of rice. In addition, assessments of active burrows, tracking tile activity and rodent damage to the rice crop, were conducted in the dry season. GUDs were significantly lower in the center of the rice fields than on the field edges, suggesting that rodent damage to rice is greater in the middle of rice fields due to a lower perceived predation risk. Furthermore, this perception of predation risk (or fear) increases towards the field edge and was greatest on the rice bund, where there was no vegetation cover. We discuss the implications for rodent management and rodent damage assessments in rice fields. This is the first documented use of GUDs in a rice agro-ecosystem in Asia; thus we identify the challenges and lessons learned through this process.


Asunto(s)
Agricultura , Conducta Animal , Oryza , Roedores , Animales , Control de Plagas , Densidad de Población
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA