Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6913, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37903758

RESUMEN

Passenger and freight travel account for 28% of U.S. greenhouse gas (GHG) emissions today. We explore pathways to reduce transportation emissions using NREL's TEMPO model under bounding assumptions on future travel behavior, technology advancement, and policies. Results show diverse routes to 80% or more well-to-wheel GHG reductions by 2050. Rapid adoption of zero-emission vehicles coupled with a clean electric grid is essential for deep decarbonization; in the median scenario, zero-emission vehicle sales reach 89% for passenger light-duty and 69% for freight trucks by 2030 and 100% sales for both by 2040. Up to 3,000 terawatt-hours of electricity could be needed in 2050 to power plug-in electric vehicles. Increased sustainable biofuel usage is also essential for decarbonizing aviation (10-42 billion gallons needed in 2050) and to support legacy vehicles during the transition. Managing travel demand growth can ease this transition by reducing the need for clean electricity and sustainable fuels.

2.
Energy Policy ; 161: 1-10, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-37091191

RESUMEN

Assessments of the impact of the U.S. renewable fuel standard (RFS) should inform consideration of future biofuels policy. Conventional wisdom suggests the RFS played a major role in stimulating the ten-fold expansion in ethanol production and consumption in the United States from 2002 to 2019, but evidence increasingly suggests the RFS might have had a smaller effect than previously assumed. Price competitiveness, federal and state policies such as reformulated gasoline requirements, and octane content in ethanol also affect ethanol market attractiveness. This study explores the roles of policy and economic factors by comparing historical data with results from scenarios simulated in a system dynamics model. Results suggest price competitiveness explains much of the growth in the ethanol industry from 2002 to 2019. The Volumetric Ethanol Excise Tax Credit and phaseout of the oxygenate methyl tert-butyl ether contributed to earlier growth relative to expected timing of growth based on fuel price alone. The RFS (modeled through observed Renewable Identification Numbers [RINs]) contributed to increased ethanol production in later years and may have increased production in the earlier years if risk of investment was decreased.

3.
PLoS One ; 7(5): e35082, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22606230

RESUMEN

The Energy Independence and Security Act of 2007 targets use of 36 billion gallons of biofuels per year by 2022. Achieving this may require substantial changes to current transportation fuel systems for distribution, dispensing, and use in vehicles. The U.S. Department of Energy and the National Renewable Energy Laboratory designed a system dynamics approach to help focus government action by determining what supply chain changes would have the greatest potential to accelerate biofuels deployment. The National Renewable Energy Laboratory developed the Biomass Scenario Model, a system dynamics model which represents the primary system effects and dependencies in the biomass-to-biofuels supply chain. The model provides a framework for developing scenarios and conducting biofuels policy analysis. This paper focuses on the downstream portion of the supply chain-represented in the distribution logistics, dispensing station, and fuel utilization, and vehicle modules of the Biomass Scenario Model. This model initially focused on ethanol, but has since been expanded to include other biofuels. Some portions of this system are represented dynamically with major interactions and feedbacks, especially those related to a dispensing station owner's decision whether to offer ethanol fuel and a consumer's choice whether to purchase that fuel. Other portions of the system are modeled with little or no dynamics; the vehicle choices of consumers are represented as discrete scenarios. This paper explores conditions needed to sustain an ethanol fuel market and identifies implications of these findings for program and policy goals. A large, economically sustainable ethanol fuel market (or other biofuel market) requires low end-user fuel price relative to gasoline and sufficient producer payment, which are difficult to achieve simultaneously. Other requirements (different for ethanol vs. other biofuel markets) include the need for infrastructure for distribution and dispensing and widespread use of high ethanol blends in flexible-fuel vehicles.


Asunto(s)
Biocombustibles/provisión & distribución , Etanol/provisión & distribución , Biocombustibles/economía , Biomasa , Costos y Análisis de Costo , Etanol/economía , Vehículos a Motor/legislación & jurisprudencia , Energía Renovable/economía , Energía Renovable/legislación & jurisprudencia , Teoría de Sistemas , Transportes/legislación & jurisprudencia , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...