Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 198(20): 2803-9, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27481927

RESUMEN

UNLABELLED: The sialic acids (N-acylneuraminates) are a group of nine-carbon keto-sugars existing mainly as terminal residues on animal glycoprotein and glycolipid carbohydrate chains. Bacterial commensals and pathogens exploit host sialic acids for nutrition, adhesion, or antirecognition, where N-acetyl- or N-glycolylneuraminic acids are the two predominant chemical forms of sialic acids. Each form may be modified by acetyl esters at carbon position 4, 7, 8, or 9 and by a variety of less-common modifications. Modified sialic acids produce challenges for colonizing bacteria, because the chemical alterations to N-acetylneuraminic acid (Neu5Ac) confer increased resistance to sialidase and aldolase activities essential for the catabolism of host sialic acids. Bacteria with O-acetyl sialate esterase(s) utilize acetylated sialic acids for growth, thereby gaining a presumed metabolic advantage over competitors lacking this activity. Here, we demonstrate the esterase activity of Escherichia coli NanS after purifying it as a C-terminal HaloTag fusion. Using a similar approach, we show that E. coli strain O157:H7 Stx prophage or prophage remnants invariably include paralogs of nanS often located downstream of the Shiga-like toxin genes. These paralogs may include sequences encoding N- or C-terminal domains of unknown function where the NanS domains can act as sialate O-acetyl esterases, as shown by complementation of an E. coli strain K-12 nanS mutant and the unimpaired growth of an E. coli O157 nanS mutant on O-acetylated sialic acid. We further demonstrate that nanS homologs in Streptococcus spp. also encode active esterase, demonstrating an unexpected diversity of bacterial sialate O-acetyl esterase. IMPORTANCE: The sialic acids are a family of over 40 naturally occurring 9-carbon keto-sugars that function in a variety of host-bacterium interactions. These sugars occur primarily as terminal carbohydrate residues on host glycoproteins and glycolipids. Available evidence indicates that diverse bacterial species use host sialic acids for adhesion or as sources of carbon and nitrogen. Our results show that the catabolism of the diacetylated form of host sialic acid requires a specialized esterase, NanS. Our results further show that nanS homologs exist in bacteria other than Escherichia coli, as well as part of toxigenic E. coli prophage. The unexpected diversity of these enzymes suggests new avenues for investigating host-bacterium interactions. Therefore, these original results extend our previous studies of nanS to include mucosal pathogens, prophage, and prophage remnants. This expansion of the nanS superfamily suggests important, although as-yet-unknown, functions in host-microbe interactions.


Asunto(s)
Acetilesterasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Acetilesterasa/química , Acetilesterasa/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli O157/química , Escherichia coli O157/enzimología , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo , Dominios Proteicos
2.
J Bacteriol ; 195(20): 4689-701, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23935044

RESUMEN

NanR, one of >8,500 GntR superfamily helix-turn-helix transcriptional regulators, controls expression of the genes required for catabolism of sialic acids in Escherichia coli. It is predicted to do the same in related bacteria harboring orthologs of nanR. The sialic acids are a family of over 40 naturally occurring nine-carbon keto-sugar acids found mainly in the animal lineage, which includes starfish to humans in the deuterostome lineage. Sialic acids function in development, immunity, protein localization and stability, and homeostasis. They also serve as microbial carbon and nitrogen sources and ligands for cell recognition during host colonization. The importance of microbial sialic acid metabolism for host-microbe interactions has made it a target for therapeutic development. Exploiting this target depends on understanding sialometabolic pathways in a wide range of evolutionarily distinct bacteria. Here, we show by transcriptome, genetic, and biochemical analyses that the most common sialic acid, N-acetylneuraminate, induces the nanATEK-yhcH, yjhATS (nanCMS), and yjhBC operons by directly inactivating NanR, converting the predominantly dimeric form of the repressor to an inactive monomer of approximately 30-kDa. Additionally, other results identify critical amino acid residues and nucleotides in the regulator and operator, respectively. The combined results better define how sialic acids, acting through NanR, affect the metabolic flux of an important group of host-derived metabolites. Thus, E. coli serves as a valuable model for understanding sialocatabolic pathways in bacteria.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Ácidos Siálicos/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Transcriptoma
3.
ISRN Microbiol ; 2013: 816713, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23724337

RESUMEN

Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection.

4.
Methods Mol Biol ; 966: 109-20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23299731

RESUMEN

Polysialic acid capsules are the major virulence factors in Escherichia coliK1, K92, and groups B and C meningococci. The sialic acid monomers (2-keto-3-deoxy-5-acetamido-7,8,9-D-glycero-D-galacto-nonulosonic acids) comprising these homopolymeric polysaccharide chains can be selectively modified with 1,2-diamino-4,5-methylenedioxy-benzene to produce highly fluorescent quinoxalinone derivatives distinguished by their elution times during reverse phase chromatography. Here, we describe methods to release the constituent capsular polysialic acid monomers, and to detect and quantify them by sensitive fluorometry. There are relatively few 2-keto acids in bacteria, making it possible to rapidly analyze samples even without prior purification of capsular polysaccharides.


Asunto(s)
Cromatografía Liquida/métodos , Escherichia coli/química , Ácidos Siálicos/análisis , Escherichia coli/crecimiento & desarrollo , Colorantes Fluorescentes/química , Estándares de Referencia
5.
J Bacteriol ; 191(22): 7134-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19749043

RESUMEN

The nanATEK-yhcH, yjhATS, and yjhBC operons in Escherichia coli are coregulated by environmental N-acetylneuraminic acid, the most prevalent sialic acid in nature. Here we show that YjhS (NanS) is a probable 9-O-acetyl N-acetylneuraminic acid esterase required for E. coli to grow on this alternative sialic acid, which is commonly found in mammalian host mucosal sites.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Ácidos Siálicos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Ácido N-Acetilneuramínico/metabolismo
6.
Microbiology (Reading) ; 155(Pt 1): 9-15, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19118341

RESUMEN

The outer membrane (OM) of almost all Gram-negative bacteria is composed of phospholipids, lipopolysaccharide, proteins and capsular or loosely adherent polysaccharides that together mediate cellular interactions with diverse environments. Most OM components are synthesized intracellularly or at the inner membrane (IM) and thus require an export mechanism. This mini-review focuses on recent progress in understanding how synthesis of one kind of capsular polysaccharide (group 2) is coupled to the export apparatus located in the IM and spanning the periplasmic space, thus providing a transport channel to the cell surface. Although the model system for these investigations is the medically important extraintestinal pathogen Escherichia coli K1 and its polysialic acid capsule, the conclusions are general for other group 2 and group 2-like polysaccharides synthesized by many different bacterial species.


Asunto(s)
Cápsulas Bacterianas/biosíntesis , Cápsulas Bacterianas/metabolismo , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
7.
Mol Microbiol ; 68(5): 1252-67, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18435708

RESUMEN

Capsular polysaccharides are important virulence determinants in a wide range of invasive infectious diseases. Although capsule synthesis has been extensively investigated, understanding polysaccharide export from the cytoplasm to the external environment has been more difficult. Here we present the results of a novel protection assay indicating that synthesis and export of the Escherichia coli K1 group 2 capsular polysialic acid (K1 antigen) occur within a protected subcellular compartment designated the sialisome. In addition to the polymerase encoded by neuS, localization and complementation analyses indicated that the sialisome includes the accessory membrane protein NeuE. The requirement for NeuE was suppressed by overproducing NeuS, suggesting that NeuE functions by stabilizing the polymerase or facilitating its assembly in the sialisome. Although an interaction between NeuE and NeuS could not be demonstrated with a bacterial two-hybrid system that reconstitutes an intracellular cell-signalling pathway, interactions between NeuS and KpsC as well as other sialisome components were detected. The combined results provide direct evidence for specific protein-protein interactions in the synthesis and export of group 2 capsular polysaccharides under in vivo conditions. The approaches developed here will facilitate further dissection of the sialisome, suggesting similar methodology for understanding the biosynthesis of other group 2 capsules.


Asunto(s)
Cápsulas Bacterianas/metabolismo , Escherichia coli/enzimología , Genes Bacterianos , Polisacáridos Bacterianos/biosíntesis , Ácidos Siálicos/biosíntesis , Sialiltransferasas/metabolismo , Cápsulas Bacterianas/genética , Citoplasma , Escherichia coli/citología , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Familia de Multigenes , Sialiltransferasas/química , Sialiltransferasas/genética
8.
J Bacteriol ; 189(17): 6447-56, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17601779

RESUMEN

Escherichia coli K1 is the leading cause of human neonatal sepsis and meningitis and is important in other clinical syndromes of both humans and domestic animals; in this strain the polysialic acid capsule (K1 antigen) functions by inhibiting innate immunity. Recent discovery of the phase-variable capsular O acetylation mechanism indicated that the O-acetyltransferase gene, neuO, is carried on a putative K1-specific prophage designated CUS-3 (E. L. Deszo, S. M. Steenbergen, D. I. Freedberg, and E. R. Vimr, Proc. Natl. Acad. Sci. USA 102:5564-5569, 2005). Here we describe the isolation and characterization of a CUS-3 derivative (CUS-3a), demonstrating its morphology, lysogenization of a sensitive host, and the distribution of CUS-3 among a collection of 111 different K1 strains. The 40,207-bp CUS-3 genome was annotated from the strain RS218 genomic DNA sequence, indicating that most of the 63 phage open reading frames have their closest homologues in one of seven different lambdoid phages. Translational fusion of a reporter lacZ fragment to the hypervariable poly-Psi domain facilitated measurement of phase variation frequencies, indicating no significant differences between switch rates or effects on rates of the methyl-directed mismatch repair system. PCR analysis of poly-Psi domain length indicated preferential loss or gain of single 5'-AAGACTC-3' nucleotide repeats. Analysis of a K1 strain previously reported as "locked on" indicated a poly-Psi region with the least number of heptad repeats compatible with in-frame neuO expression. The combined results establish CUS-3 as an active mobile contingency locus in E. coli K1, indicating its capacity to mediate population-wide capsule variation.


Asunto(s)
Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Colifagos/enzimología , Colifagos/aislamiento & purificación , Escherichia coli/inmunología , Escherichia coli/virología , Polisacáridos Bacterianos/inmunología , Polisacáridos Bacterianos/metabolismo , Ácidos Siálicos/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Cápsulas Bacterianas , Bacteriófago lambda/genética , Colifagos/metabolismo , Colifagos/ultraestructura , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genes Reporteros , Genes Virales , Humanos , Lisogenia , Profagos/enzimología , Profagos/genética , Profagos/aislamiento & purificación , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia , beta-Galactosidasa/biosíntesis , beta-Galactosidasa/genética
9.
Trends Microbiol ; 15(5): 196-202, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17418577

RESUMEN

Phase variation is usually thought of as the stochastic switching between alternatively expressed ('on') and unexpressed ('off') phenotypic states. However, coupling synthesis of a monotonous homopolysaccharide to a mechanism of random but incomplete chemical modification produces almost infinite structural variation. Potentially limitless variability implies that evolution can produce highly ornate or extravagant flourishes reminiscent of the baroque style. Here, we describe an analysis of capsular polysialic acid form variation in Escherichia coli K1, demonstrating that the large number of variant structures is controlled by a single contingency locus. The mechanism for generating maximum structural diversity from maximal genetic parsimony is conferred by a simple translational switch carried on a K1-specific prophage.


Asunto(s)
Cápsulas Bacterianas/química , Escherichia coli/metabolismo , Ácidos Siálicos/química , Acetiltransferasas/metabolismo , Cápsulas Bacterianas/metabolismo , Escherichia coli/fisiología , Estructura Molecular , Ácidos Siálicos/metabolismo , Ácidos Siálicos/fisiología
10.
J Bacteriol ; 188(17): 6195-206, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16923886

RESUMEN

O acetylation at carbon positions 7 or 9 of the sialic acid residues in the polysialic acid capsule of Escherichia coli K1 is catalyzed by a phase-variable contingency locus, neuO, carried by the K1-specific prophage, CUS-3. Here we describe a novel method for analyzing polymeric sialic acid O acetylation that involves the release of surface sialic acids by endo-N-acetylneuraminidase digestion, followed by fluorescent labeling and detection of quinoxalinone derivatives by chromatography. The results indicated that NeuO is responsible for the majority of capsule modification that takes place in vivo. However, a minor neuO-independent O acetylation pathway was detected that is dependent on the bifunctional polypeptide encoded by neuD. This pathway involves O acetylation of monomeric sialic acid and is regulated by another bifunctional enzyme, NeuA, which includes N-terminal synthetase and C-terminal sialyl O-esterase domains. A homologue of the NeuA C-terminal domain (Pm1710) in Pasteurella multocida was also shown to be an esterase, suggesting that it functions in the catabolism of acetylated environmental sialic acids. Our combined results indicate a previously unexpected complexity in the synthesis and catabolism of microbial sialic and polysialic acids. These findings are key to understanding the biological functions of modified sialic acids in E. coli K1 and other species and may provide new targets for drug or vaccine development.


Asunto(s)
Acetilesterasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Acetilación , Acetilesterasa/análisis , Acetiltransferasas/análisis , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Cromatografía en Capa Delgada/métodos , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/análisis , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Quinoxalinas , Alineación de Secuencia
11.
Mol Microbiol ; 60(4): 828-37, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16677296

RESUMEN

Escherichia coli K1 is part of a reservoir of adherent, invasive facultative pathogens responsible for a wide range of human and animal disease including sepsis, meningitis, urinary tract infection and inflammatory bowel syndrome. A prominent virulence factor in these diseases is the polysialic acid capsular polysaccharide (K1 antigen), which is encoded by the kps/neu accretion domain inserted near pheV at 67 map units. Some E. coli K1 strains undergo form (phase) variation involving loss or gain of O-acetyl esters at carbon positions 7 or 9 of the individual sialic acid residues of the polysialic acid chains. Acetylation is catalysed by the receptor-modifying acetyl coenzyme-A-dependent O-acetyltransferase encoded by neuO, a phase variable locus mapping near the integrase gene of the K1-specific prophage, CUS-3, which is inserted in argW at 53.1 map units. As the first E. coli contingency locus shown to operate by a translational switch, further investigation of neuO should provide a better understanding of the invasive K1 pathotype. Minimal estimates of morbidity and economic costs associated with human infections caused by extraintestinal pathogenic E. coli strains such as K1 indicate at least 6.5 million cases with attendant medical costs exceeding 2.5 billion US dollars annually in the United States alone.


Asunto(s)
Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Cápsulas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Ácidos Siálicos/metabolismo , Acetilación , Escherichia coli/enzimología , Escherichia coli/genética , Genes Bacterianos , Ácidos Siálicos/química , Virulencia
12.
Proc Natl Acad Sci U S A ; 102(15): 5564-9, 2005 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-15809431

RESUMEN

Potential O-acetylation of the sialic acid residues of Escherichia coli K1, groups W-135, Y, and C meningococci, and group B Streptococcus capsular polysaccharides modifies their immunogenicity and susceptibility to glycosidases. Despite the biological importance of O-acetylation, no sialic or polysialic acid O-acetyltransferase has been identified in any system. Here we show that the E. coli K1 O-acetyltransferase encoded by neuO is genetically linked to the endo-neuraminidase tail protein gene of a chromosomal accretion element, designated CUS-3, with homology to lambdoid bacteriophage. Molecular epidemiological analysis established concordance between O-acetyltransferase and CUS-3 in a set of E. coli K1 strains. Deleting neuO eliminated enzymatic activity, which was restored by complementation in trans, and confirmed by (13)C-NMR analysis of the acetylated product. Analysis of mutants that accumulate intracellular polysialic acid because of export defects (kpsM and kpsS) or an inability to synthesize the sialic acid precursor, N-acetylmannosamine (neuC), indicated that NeuO does not require constant association with its substrate for activity. DNA sequencing and PCR analysis of neuO from strains that had undergone random capsule form variation showed that slip strand DNA mispairing or unequal recombination resulted in gain or loss of (5'-AAGACTC-3')(n) heptanucleotide repeats (where n approximately equals 14-39) located in the neuO 5' region. These repeats code for a previously undescribed structure designated the poly(Psi) motif. The unexpected discovery of the neuO contingency locus (hypervariable gene controlling expression of a surface epitope) in E. coli, and of a potential phage for redistributing variant neuO alleles, provides a robust system for investigating the functions of localized hypermutability in pathogen evolution.


Asunto(s)
Acetiltransferasas/metabolismo , Cápsulas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Variación Genética/genética , Acetilación , Acetilesterasa/química , Acetilesterasa/genética , Acetilesterasa/metabolismo , Acetiltransferasas/química , Acetiltransferasas/genética , Alelos , Secuencia de Aminoácidos , Clonación Molecular , Escherichia coli/clasificación , Escherichia coli/citología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Mutación del Sistema de Lectura/genética , Genes Bacterianos , Datos de Secuencia Molecular , Ácidos Siálicos/metabolismo
13.
Infect Immun ; 73(3): 1284-94, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15731025

RESUMEN

Pasteurella multocida subsp. multocida is a commensal and opportunistic pathogen of food animals, wildlife, and pets and a zoonotic cause of human infection arising from contacts with these animals. Here, an investigation of multiple serotype A strains demonstrated the occurrence of membrane sialyltransferase. Although P. multocida lacks the genes for the two earliest steps in de novo sialic acid synthesis, adding sialic acid to the growth medium resulted in uptake, activation, and subsequent transfer of sialic acid to a membrane acceptor resembling lipooligosaccharide. Two candidate-activating enzymes with homology to Escherichia coli cytidine 5'-monophospho-N-acetylneuraminate synthetase were overproduced as histidine-tagged polypeptides. The synthetase encoded by pm0187 was at least 37 times more active than the pm1710 gene product, suggesting pm0187 encodes the primary sialic acid cytidylyltransferase in P. multocida. A sialate aldolase (pm1715) mutant unable to initiate dissimilation of internalized sialic acid was not attenuated in the CD-1 mouse model of systemic pasteurellosis, indicating that the nutritional function of sialate catabolism is not required for systemic disease. In contrast, the attenuation of a sialate uptake-deficient mutant supports the essential role in pathogenesis of a sialylation mechanism that is dependent on an environmental (host) supply of sialic acid. The combined results provide the first direct evidence of sialylation by a precursor scavenging mechanism in pasteurellae and of a potential tripartite ATP-independent periplasmic sialate transporter in any species.


Asunto(s)
Infecciones por Pasteurella/metabolismo , Pasteurella multocida/enzimología , Pasteurella multocida/patogenicidad , Ácidos Siálicos/metabolismo , Sialiltransferasas/metabolismo , Animales , Animales no Consanguíneos , Bovinos , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Modelos Animales de Enfermedad , Femenino , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Humanos , Ratones , Sistemas de Lectura Abierta/genética , Infecciones por Pasteurella/microbiología , Pasteurella multocida/genética , Sialiltransferasas/genética , Virulencia
14.
Microbiol Mol Biol Rev ; 68(1): 132-53, 2004 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15007099

RESUMEN

Sialic acids are structurally unique nine-carbon keto sugars occupying the interface between the host and commensal or pathogenic microorganisms. An important function of host sialic acid is to regulate innate immunity, and microbes have evolved various strategies for subverting this process by decorating their surfaces with sialylated oligosaccharides that mimic those of the host. These subversive strategies include a de novo synthetic pathway and at least two truncated pathways that depend on scavenging host-derived intermediates. A fourth strategy involves modification of sialidases so that instead of transferring sialic acid to water (hydrolysis), a second active site is created for binding alternative acceptors. Sialic acids also are excellent sources of carbon, nitrogen, energy, and precursors of cell wall biosynthesis. The catabolic strategies for exploiting host sialic acids as nutritional sources are as diverse as the biosynthetic mechanisms, including examples of horizontal gene transfer and multiple transport systems. Finally, as compounds coating the surfaces of virtually every vertebrate cell, sialic acids provide information about the host environment that, at least in Escherichia coli, is interpreted by the global regulator encoded by nanR. In addition to regulating the catabolism of sialic acids through the nan operon, NanR controls at least two other operons of unknown function and appears to participate in the regulation of type 1 fimbrial phase variation. Sialic acid is, therefore, a host molecule to be copied (molecular mimicry), eaten (nutrition), and interpreted (cell signaling) by diverse metabolic machinery in all major groups of mammalian pathogens and commensals.


Asunto(s)
Bacterias/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ácido N-Acetilneuramínico/metabolismo , Secuencia de Aminoácidos , Animales , Bacterias/genética , Bacterias/patogenicidad , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/patogenicidad , Haemophilus influenzae/genética , Haemophilus influenzae/metabolismo , Haemophilus influenzae/patogenicidad , Humanos , Datos de Secuencia Molecular , Ácido N-Acetilneuramínico/química
15.
Mol Microbiol ; 50(3): 961-75, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14617154

RESUMEN

A variety of pathogens or commensals use at least one of four distinct mechanisms for decorating their surfaces with sialic acid as a strategy to avoid, subvert or inhibit host innate immunity. The metabolism of sialic acid thus is central to a range of host-pathogen interactions. The first committed step in this process, the production of free N-acetylmannosamine (ManNAc), has not been defined. Here we show that ManNAc-6-phosphate (ManNAc-6-P) is not an obligate sialate precursor in Escherichia coli K1. This conclusion was supported by 31P NMR spectroscopy of E. coli K1 derivatives engineered with different combinations of mutations in nanA (sialate aldolase or lyase), nanK (ManNAc kinase), nanE (ManNAc-6-P 2-epimerase), neuS (polysialyltransferase) and neuB (sialate synthase). The product specificities for purified NanK and NanE were determined by chromatographic analyses. Direct biochemical analysis showed that ManNAc-6-P was stable in a nanE mutant extract. The combined results indicate that neither ManNAc-6-P nor specific or non-specific phosphatase are necessary to generate the requisite ManNAc for sialate biosynthesis. Our results imply that the neuC gene product encodes an UDP-N-acetylglucosamine 2-epimerase that generates ManNAc directly from the dinucleotide-sugar precursor despite detection of only this enzyme's UDP-GlcNAc hydrolase activity. This study describes the first use of NMR for analysing intermediate flux within the sialate biosynthetic pathway.


Asunto(s)
Proteínas Bacterianas , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hexosaminas/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/aislamiento & purificación , Carbohidrato Epimerasas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Clonación Molecular , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Histidina/genética , Espectroscopía de Resonancia Magnética/métodos , Mutación , Ácido N-Acetilneuramínico/metabolismo , Oxo-Ácido-Liasas/genética , Oxo-Ácido-Liasas/metabolismo , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/aislamiento & purificación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
16.
J Bacteriol ; 185(16): 4806-15, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12897000

RESUMEN

All Escherichia coli strains so far examined possess a chromosomally encoded nanATEK-yhcH operon for the catabolism of sialic acids. These unique nine-carbon sugars are synthesized primarily by higher eukaryotes and can be used as carbon, nitrogen, and energy sources by a variety of microbial pathogens or commensals. The gene nanR, located immediately upstream of the operon, encodes a protein of the FadR/GntR family that represses nan expression in trans. S1 analysis identified the nan transcriptional start, and DNA footprint analysis showed that NanR binds to a region of approximately 30 bp covering the promoter region. Native (nondenaturing) polyacrylamide gel electrophoresis, mass spectrometry, and chemical cross-linking indicated that NanR forms homodimers in solution. The region protected by NanR contains three tandem repeats of the hexameric sequence GGTATA. Gel shift analysis with purified hexahistidine-tagged or native NanR detected three retarded complexes, suggesting that NanR binds sequentially to the three repeats. Artificial operators carrying different numbers of repeats formed the corresponding number of complexes. Among the sugars tested that were predicted to be products of the nan-encoded system, only the exogenous addition of sialic acid resulted in the dramatic induction of a chromosomal nanA-lacZ fusion or displaced NanR from its operator in vitro. Titration of NanR by the nan promoter region or artificial operators carrying different numbers of the GGTATA repeat on plasmids in this fusion strain supported the binding of the regulator to target DNA in vivo. Together, the results indicate that GGTATA is important for NanR binding, but the precise mechanism remains to be determined.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Ácido N-Acetilneuramínico/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Datos de Secuencia Molecular , Regiones Operadoras Genéticas , Regiones Promotoras Genéticas , Proteínas Represoras/química , Proteínas Represoras/genética , Transcripción Genética
17.
Microb Pathog ; 34(3): 149-54, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12631476

RESUMEN

Although host adapted to pigs, Salmonella enterica serovar Choleraesuis (S. choleraesuis) can induce a virulent foodborne salmonellosis in humans. To directly investigate virulence factors of S. choleraesuis, we extended the functional genomics approach of signature-tagged mutagenesis to S. choleraesuis and pigs. When a test pool of 45 randomly signature-tagged null mutants was inoculated orally and intraperitoneally in pigs, one of the mutants that failed to colonize by either route was tagged in hilA. In the broad host range serovar S. typhimurium, hilA regulates invasion genes in the first pathogenicity island and is required for enteric but not systemic infections in mice experimentally infected with S. typhimurium. The pool of tagged S. choleraesuis null mutants was a complex mix inoculated in pigs. When pigs were challenged with an equal mixture of the hilA mutant and wild type bacteria, the hilA mutant was at a competitive disadvantaged (attenuated) in pigs inoculated orally but not in intraperitoneally inoculated pigs. Our data support that hilA in S. choleraesuis infections of pigs has a role in enteric but not systemic infections similar to that of S. typhimurium in the murine model of human typhoid fever. The role of hilA may be conserved across Salmonella serovars and host species.


Asunto(s)
Mutación , Salmonelosis Animal/microbiología , Salmonella enterica/patogenicidad , Enfermedades de los Porcinos/microbiología , Transactivadores/metabolismo , Administración Oral , Animales , Proteínas Bacterianas , Medios de Cultivo , Femenino , Regulación Bacteriana de la Expresión Génica , Inyecciones Intraperitoneales , Masculino , Mutagénesis Insercional/métodos , Salmonella enterica/genética , Salmonella enterica/crecimiento & desarrollo , Porcinos , Transactivadores/genética , Virulencia
18.
Vet Microbiol ; 93(1): 79-87, 2003 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-12591209

RESUMEN

Haemophilus parasuis, which causes polyserositis, polysynovitis, meningitis, septicemia, and pneumonia in pigs, has emerged as an increasing problem in modern swine production systems. Co-factors for and the pathogenesis of H. parasuis disease are not defined. One of the potential virulence factors of H. parasuis is its neuraminidase (sialidase). While purifying the H. parasuis neuraminidase from the membrane fraction, we developed a protocol to renature enzymatic activity after enzyme preparations were resolved electrophorectically in denaturing polyacrylamide gels. The H. parasuis neuraminidase co-resolved with recombinant neuraminidase of Vibrio cholera; thus its apparent molecular mass is 82 kilodalton (kDa). The H. parasuis neuraminidase was associated with the membrane fraction and the purification protocol removed over 99% of the H. parasuis cell protein while retaining over 90% of the neuraminidase activity. Purified protein will provide another avenue to clone the neuraminidase gene that has been refractory to cloning and the protocol will be a means to purify recombinant protein.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Haemophilus/enzimología , Neuraminidasa/aislamiento & purificación , Animales , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cromatografía por Intercambio Iónico/veterinaria , Electroforesis en Gel de Poliacrilamida/veterinaria , Peso Molecular , Neuraminidasa/metabolismo , Desnaturalización Proteica/fisiología , Renaturación de Proteína , Porcinos
19.
J Biol Chem ; 278(17): 15349-59, 2003 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-12578835

RESUMEN

Polysialic acid (PSA) capsules are cell-associated homopolymers of alpha2,8-, alpha2,9-, or alternating alpha2,8/2,9-linked sialic acid residues that function as essential virulence factors in neuroinvasive diseases caused by certain strains of Escherichia coli and Neisseria meningitidis. PSA chains structurally identical to the bacterial alpha2,8-linked capsular polysaccharides are also synthesized by the mammalian central nervous system, where they regulate neuronal function in association with the neural cell adhesion molecule (NCAM). Despite the structural identity between bacterial and NCAM PSAs, the respective polysialyltransferases (polySTs) responsible for polymerizing sialyl residues from donor CMP-sialic acid are not homologous glycosyltransferases. To better define the mechanism of capsule biosynthesis, we established the functional interchangeability of bacterial polySTs by complementation of a polymerase-deficient E. coli K1 mutant with the polyST genes from groups B or C N. meningitidis and the control E. coli K92 polymerase gene. The biochemical and immunochemical results demonstrated that linkage specificity is dictated solely by the source of the polymerase structural gene. To determine the molecular basis for linkage specificity, we created chimeras of the K1 and K92 polySTs by overlap extension PCR. Exchanging the first 52 N-terminal amino acids of the K1 NeuS with the C terminus of the K92 homologue did not alter specificity of the resulting chimera, whereas exchanging the first 85 or reciprocally exchanging the first 100 residues did. These results demonstrated that linkage specificity is dependent on residues located between positions 53 and 85 from the N terminus. Site-directed mutagenesis of the K92 polyST N terminus indicated that no single residue alteration was sufficient to affect specificity, consistent with the proposed function of this domain in orienting the acceptor. The combined results provide the first evidence for residues critical to acceptor binding and elongation in polysialyltransferase.


Asunto(s)
Cápsulas Bacterianas/química , Polisacáridos Bacterianos/biosíntesis , Ácidos Siálicos/biosíntesis , Sialiltransferasas/química , Secuencia de Aminoácidos , Cápsulas Bacterianas/biosíntesis , Cápsulas Bacterianas/genética , Secuencia de Carbohidratos , Escherichia coli/enzimología , Escherichia coli/metabolismo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Neisseria meningitidis Serogrupo B/enzimología , Neisseria meningitidis Serogrupo B/metabolismo , Neisseria meningitidis Serogrupo C/enzimología , Neisseria meningitidis Serogrupo C/metabolismo , Plásmidos , Alineación de Secuencia , Sialiltransferasas/metabolismo
20.
J Bacteriol ; 184(21): 6050-5, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12374839

RESUMEN

Microbial virulence is known to emerge by horizontal gene transfer mechanisms. Here we describe the discovery of a novel filamentous prophage, designated CUS-1, which is integrated into the chromosomal dif homologue of the high-virulence clone Escherichia coli O18:K1:H7. An homologous chromosomal element (CUS-2) in Yersinia pestis biovar orientalis is integrated at the same relative location as CUS-1; both lysogenic E. coli and Y. pestis strains produce particles with properties expected of single-stranded DNA virions. CUS(phi) is epidemiologically correlated with the emergence of K1 strains with increased virulence and with the Y. pestis biovar responsible for the current (third) plague pandemic.


Asunto(s)
Bacteriófagos/genética , Escherichia coli/virología , Provirus/genética , Yersinia pestis/virología , Animales , Bacteriófagos/fisiología , Escherichia coli/genética , Sistemas de Lectura Abierta , Provirus/fisiología , Ratas , Yersinia pestis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...