Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 907
Filtrar
1.
Crit Care ; 28(1): 154, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38725060

RESUMEN

Healthcare systems are large contributors to global emissions, and intensive care units (ICUs) are a complex and resource-intensive component of these systems. Recent global movements in sustainability initiatives, led mostly by Europe and Oceania, have tried to mitigate ICUs' notable environmental impact with varying success. However, there exists a significant gap in the U.S. knowledge and published literature related to sustainability in the ICU. After a narrative review of the literature and related industry standards, we share our experience with a Green ICU initiative at a large hospital system in Texas. Our process has led to a 3-step pathway to inform similar initiatives for sustainable (green) critical care. This pathway involves (1) establishing a baseline by quantifying the status quo carbon footprint of the affected ICU as well as the cumulative footprint of all the ICUs in the healthcare system; (2) forming alliances and partnerships to target each major source of these pollutants and implement specific intervention programs that reduce the ICU-related greenhouse gas emissions and solid waste; and (3) finally to implement a systemwide Green ICU which requires the creation of multiple parallel pathways that marshal the resources at the grass-roots level to engage the ICU staff and institutionalize a mindset that recognizes and respects the impact of ICU functions on our environment. It is expected that such a systems-based multi-stakeholder approach would pave the way for improved sustainability in critical care.


Asunto(s)
Unidades de Cuidados Intensivos , Humanos , Unidades de Cuidados Intensivos/organización & administración , Unidades de Cuidados Intensivos/tendencias , Cuidados Críticos/métodos , Cuidados Críticos/tendencias , Desarrollo Sostenible/tendencias , Huella de Carbono , Hospitales/tendencias , Hospitales/normas , Texas
2.
Artículo en Inglés | MEDLINE | ID: mdl-38687499

RESUMEN

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. In order to impact clinical care, identified subpopulations must do more than differentiate prognosis. They must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

3.
Panminerva Med ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536008

RESUMEN

Increasing numbers of older patients are being admitted to the Intensive Care Unit (ICU) as the world's population ages. The biological process of ageing, senescence, results in altered ability to maintain normal homeostasis and organ function, including of the cardiovascular, immune, and neuromuscular systems. This contributes towards increased frailty in older patients, associated with functional limitations and increased vulnerability. Although widely defined using chronological age, the concept of "old age" is thus multifactorial, including biological, but also psychological and sociocultural aspects, which should all be taken into account when considering what is appropriate in terms of ICU admission and management. As for all patients, but perhaps particularly in this subgroup, decisions regarding ICU admission and treatment and the withdrawing and withholding of life support must be individualized.

4.
Lancet Respir Med ; 12(4): 323-336, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408467

RESUMEN

Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.


Asunto(s)
Resistencia a la Enfermedad , Sepsis , Humanos , Inmunomodulación
5.
Crit Care ; 28(1): 46, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365828

RESUMEN

Septic shock typically requires the administration of vasopressors. Adrenergic agents remain the first choice, namely norepinephrine. However, their use to counteract life-threatening hypotension comes with potential adverse effects, so that non-adrenergic vasopressors may also be considered. The use of agents that act through different mechanisms may also provide an advantage. Nitric oxide (NO) is the main driver of the vasodilation that leads to hypotension in septic shock, so several agents have been tested to counteract its effects. The use of non-selective NO synthase inhibitors has been of questionable benefit. Methylene blue, an inhibitor of soluble guanylate cyclase, an important enzyme involved in the NO signaling pathway in the vascular smooth muscle cell, has also been proposed. However, more than 25 years since the first clinical evaluation of MB administration in septic shock, the safety and benefits of its use are still not fully established, and it should not be used routinely in clinical practice until further evidence of its efficacy is available.


Asunto(s)
Hipotensión , Choque Séptico , Humanos , Azul de Metileno/efectos adversos , Choque Séptico/tratamiento farmacológico , Choque Séptico/metabolismo , Hipotensión/tratamiento farmacológico , Guanilil Ciclasa Soluble , Norepinefrina , Vasoconstrictores/efectos adversos
7.
Anesth Analg ; 138(2): 284-294, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215708

RESUMEN

Intravenous (IV) fluids and vasopressor agents are key components of hemodynamic management. Since their introduction, their use in the perioperative setting has continued to evolve, and we are now on the brink of automated administration. IV fluid therapy was first described in Scotland during the 1832 cholera epidemic, when pioneers in medicine saved critically ill patients dying from hypovolemic shock. However, widespread use of IV fluids only began in the 20th century. Epinephrine was discovered and purified in the United States at the end of the 19th century, but its short half-life limited its implementation into patient care. Advances in venous access, including the introduction of the central venous catheter, and the ability to administer continuous infusions of fluids and vasopressors rather than just boluses, facilitated the use of fluids and adrenergic agents. With the advent of advanced hemodynamic monitoring, most notably the pulmonary artery catheter, the role of fluids and vasopressors in the maintenance of tissue oxygenation through adequate cardiac output and perfusion pressure became more clearly established, and hemodynamic goals could be established to better titrate fluid and vasopressor therapy. Less invasive hemodynamic monitoring techniques, using echography, pulse contour analysis, and heart-lung interactions, have facilitated hemodynamic monitoring at the bedside. Most recently, advances have been made in closed-loop fluid and vasopressor therapy, which apply computer assistance to interpret hemodynamic variables and therapy. Development and increased use of artificial intelligence will likely represent a major step toward fully automated hemodynamic management in the perioperative environment in the near future. In this narrative review, we discuss the key events in experimental medicine that have led to the current status of fluid and vasopressor therapies and describe the potential benefits that future automation has to offer.


Asunto(s)
Inteligencia Artificial , Investigación Biomédica , Humanos , Hemodinámica , Vasoconstrictores/uso terapéutico , Vasoconstrictores/farmacología , Fluidoterapia/métodos , Automatización
8.
Neurocrit Care ; 40(2): 577-586, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37420137

RESUMEN

BACKGROUND: Sepsis-associated brain dysfunction (SABD) is frequent and is associated with poor outcome. Changes in brain hemodynamics remain poorly described in this setting. The aim of this study was to investigate the alterations of cerebral perfusion pressure and intracranial pressure in a cohort of septic patients. METHODS: We conducted a retrospective analysis of prospectively collected data in septic adults admitted to our intensive care unit (ICU). We included patients in whom transcranial Doppler recording performed within 48 h from diagnosis of sepsis was available. Exclusion criteria were intracranial disease, known vascular stenosis, cardiac arrhythmias, pacemaker, mechanical cardiac support, severe hypotension, and severe hypocapnia or hypercapnia. SABD was clinically diagnosed by the attending physician, anytime during the ICU stay. Estimated cerebral perfusion pressure (eCPP) and estimated intracranial pressure (eICP) were calculated from the blood flow velocity of the middle cerebral artery and invasive arterial pressure using a previously validated formula. Normal eCPP was defined as eCPP ≥ 60 mm Hg, low eCPP was defined as eCPP < 60 mm Hg; normal eICP was defined as eICP ≤ 20 mm Hg, and high eICP was defined as eICP > 20 mm Hg. RESULTS: A total of 132 patients were included in the final analysis (71% male, median [interquartile range (IQR)] age was 64 [52-71] years, median [IQR] Acute Physiology and Chronic Health Evaluation II score on admission was 21 [15-28]). Sixty-nine (49%) patients developed SABD during the ICU stay, and 38 (29%) were dead at hospital discharge. Transcranial Doppler recording lasted 9 (IQR 7-12) min. Median (IQR) eCPP was 63 (58-71) mm Hg in the cohort; 44 of 132 (33%) patients had low eCPP. Median (IQR) eICP was 8 (4-13) mm Hg; five (4%) patients had high eICP. SABD occurrence and in-hospital mortality did not differ between patients with normal eCPP and patients with low eCPP or between patients with normal eICP and patients with high eICP. Eighty-six (65%) patients had normal eCPP and normal eICP, 41 (31%) patients had low eCPP and normal eICP, three (2%) patients had low eCPP and high eICP, and two (2%) patients had normal eCPP and high eICP; however, SABD occurrence and in-hospital mortality were not significantly different among these subgroups. CONCLUSIONS: Brain hemodynamics, in particular CPP, were altered in one third of critically ill septic patients at a steady state of monitoring performed early during the course of sepsis. However, these alterations were equally common in patients who developed or did not develop SABD during the ICU stay and in patients with favorable or unfavorable outcome.


Asunto(s)
Presión Intracraneal , Sepsis , Adulto , Humanos , Masculino , Adulto Joven , Femenino , Presión Sanguínea/fisiología , Estudios Retrospectivos , Presión Intracraneal/fisiología , Circulación Cerebrovascular/fisiología , Sepsis/complicaciones
9.
Crit Care ; 27(1): 436, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37946226

RESUMEN

BACKGROUND: The phase II CIGMA trial performed in 160 patients with severe community-acquired pneumonia (sCAP) found treatment with trimodulin (human polyvalent immunoglobulin [Ig]: ~ 23% IgM, ~ 21% IgA, ~ 56% IgG) was associated with a lower mortality in those patients with elevated baseline serum levels of C-reactive protein (CRP) and/or subnormal IgM. METHODS: In this post hoc analysis, the pharmacodynamic effects of trimodulin treatment (182.6 mg/kg/day for 5 days) were investigated on Ig replenishment, cellular markers of inflammation (absolute neutrophil [ANC] and lymphocyte [ALC] count, neutrophil-to-lymphocyte ratio [NLR]), and soluble markers of inflammation (procalcitonin [PCT] and CRP). The impact of these pharmacodynamic effects on mortality was also evaluated. RESULTS: Compared with healthy subjects, baseline serum levels of IgM, IgG, and ALC were significantly lower, and ANC, NLR, PCT and CRP significantly higher in sCAP patients (p < 0.0001). Low Ig concentrations increased with trimodulin. Normalization of ANC (analysis of variance [ANOVA] p = 0.016) and PCT (ANOVA p = 0.027) was more rapid with trimodulin compared with placebo. These and other effects were more evident in patients with low baseline IgM levels. Normalization of PCT and CRP levels was both steadier and faster with trimodulin treatment. In patients with low baseline ALC, trimodulin was associated with a lower 28-day all-cause mortality rate (14.5% vs 32.1% in placebo, p = 0.043) and more ventilator-free days ([VFD]; median VFD: 3.5 vs 11 in placebo, p = 0.043). These numerical differences were greater if baseline IgM was also low (low ALC, low IgM: 8.1% mortality vs 34.1% placebo, p = 0.006; 3 VFD vs 15 VFD, p = 0.009, respectively). Results were consistent in patients with high baseline CRP (low ALC, high CRP: 10.9% mortality vs 34.1% placebo, p = 0.011). CONCLUSIONS: This post hoc pharmacodynamic analysis of a blinded phase II trial suggests that trimodulin compensates for, and more rapidly modifies, the dysregulated inflammatory response seen in sCAP patients. Trimodulin was associated with significantly lower mortality and more VFD in subgroups with high CRP and low ALC. This effect was particularly marked in patients who also had low baseline IgM values. These findings require confirmation in prospective trials.


Asunto(s)
Neumonía , Humanos , Estudios Prospectivos , Proteína C-Reactiva/análisis , Polipéptido alfa Relacionado con Calcitonina , Inflamación , Inmunoglobulina M , Inmunoglobulina A , Inmunoglobulina G , Biomarcadores
10.
Crit Care ; 27(1): 458, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001494

RESUMEN

BACKGROUND: Extracellular histones have been associated with severity and outcome in sepsis. The aim of the present study was to assess the effects of sodium-ß-O-Methyl cellobioside sulfate (mCBS), a histone-neutralizing polyanion, on the severity and outcome of sepsis in an experimental model. METHODS: This randomized placebo-controlled experimental study was performed in 24 mechanically ventilated female sheep. Sepsis was induced by fecal peritonitis. Animals were randomized to three groups: control, early treatment, and late treatment (n = 8 each). mCBS was given as a bolus (1 mg/kg) followed by a continuous infusion (1 mg/kg/h) just after sepsis induction in the early treatment group, and 4 h later in the late treatment group. Fluid administration and antimicrobial therapy were initiated 4 h T4 after feces injection, peritoneal lavage performed, and a norepinephrine infusion titrated to maintain mean arterial pressure (MAP) between 65-75 mmHg. The experiment was blinded and lasted maximum 24 h. RESULTS: During the first 4 h, MAP remained > 65 mmHg in the early treatment group but decreased significantly in the others (p < 0.01 for interaction, median value at T4: (79 [70-90] mmHg for early treatment, 57 [70-90] mmHg for late treatment, and 55 [49-60] mmHg for the control group). mCBS-treated animals required significantly less norepinephrine to maintain MAP than controls (p < 0.01 for interaction) and had lower creatinine (p < 0.01), lactate (p < 0.01), and interleukin-6 (p < 0.01) levels, associated with reduced changes in H3.1 nucleosome levels (p = 0.02). Early treatment was associated with lower norepinephrine requirements than later treatment. Two control animals died; all the mCBS-treated animals survived. CONCLUSIONS: Neutralization of extracellular histones with mCBS was associated with reduced norepinephrine requirements, improved tissue perfusion, less renal dysfunction, and lower circulating IL-6 in experimental septic shock and may represent a new therapeutic approach to be tested in clinical trials.


Asunto(s)
Sepsis , Choque Séptico , Animales , Femenino , Hemodinámica , Histonas , Interleucina-6 , Ácido Láctico , Norepinefrina/uso terapéutico , Sepsis/tratamiento farmacológico , Ovinos , Choque Séptico/tratamiento farmacológico , Sodio , Sulfatos/uso terapéutico
11.
Rev Epidemiol Sante Publique ; 71(6): 102176, 2023 Dec.
Artículo en Francés | MEDLINE | ID: mdl-37918044

Asunto(s)
Sepsis , Humanos
12.
Clin Kidney J ; 16(10): 1664-1673, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37779855

RESUMEN

Background: Acute kidney injury (AKI) requiring renal replacement therapy (RRT) in the intensive care unit (ICU) portends a poor prognosis. We aimed to better characterize predictors of survival and the mechanism of kidney failure in these patients. Methods: This was a retrospective observational study using clinical and radiological electronic health records, analysed by univariable and multivariable binary logistic regression. Histopathological examination of post-mortem renal tissue was performed. Results: Among 157 patients with AKI requiring RRT, higher serum creatinine at RRT initiation associated with increased ICU survival [odds ratio (OR) 0.33, 95% confidence interval (CI) 0.17-0.62, P = .001]; however, muscle mass (a marker of frailty) interacted with creatinine (P = .02) and superseded creatinine as a predictor of survival (OR 0.26, 95% CI 0.08-0.82; P = .02). Achieving lower cumulative fluid balance (mL/kg) predicted ICU survival (OR 1.01, 95% CI 1.00-1.01, P < .001), as supported by sensitivity analyses showing improved ICU survival with the use of furosemide (OR 0.40, 95% CI 0.18-0.87, P = .02) and increasing net ultrafiltration (OR 0.97, 95% CI 0.95-0.99, P = .02). A urine output of >500 mL/24 h strongly predicted successful liberation from RRT (OR 0.125, 95% CI 0.05-0.35, P < .001). Post-mortem reports were available for 32 patients; clinically unrecognized renal findings were described in 6 patients, 1 of whom had interstitial nephritis. Experimental staining of renal tissue from patients with sepsis-associated AKI (S-AKI) showed glomerular loss of synaptopodin (P = .02). Conclusions: Confounding of creatinine by muscle mass undermines its use as a marker of AKI severity in clinical studies. Volume management and urine output are key determinants of outcome. Loss of synaptopodin implicates glomerular injury in the pathogenesis of S-AKI.

13.
PLoS One ; 18(10): e0293544, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37903106

RESUMEN

In Belgium, antibiotic resistance leads to approximately 530 deaths with a €24 million financial burden annually. This study estimated the impact of procalcitonin-guided antibiotic stewardship programs to reduce antibiotic consumption versus standard of care in patients with suspected sepsis. A decision analytic tree modelled health and budget outcomes of procalcitonin-guided antibiotic stewardship programs for patients admitted to the intensive care unit (ICU). A literature search, a survey with local clinical experts, and national database searches were conducted to obtain model input parameters. The main outcomes were total budget impact per patient, reduction in number of antibiotic resistance cases, and cost per antibiotic day avoided. To evaluate the impact of parameter uncertainty on the source data, a deterministic sensitivity analysis was performed. A scenario analysis was conducted to investigate budget impact when including parameters for reduction in length of ICU stay and mechanical ventilation duration, in addition to base-case parameters. Based on model predictions, procalcitonin-guided antibiotic stewardship programs could reduce the number of antibiotic days by 66,868, resulting in €1.98 million savings towards antibiotic treatment in current clinical practice. Antibiotic resistance cases could decrease by 7.7% (6.1% vs 9.2%) in the procalcitonin-guided setting compared with standard of care. The base-case budget impact suggests an investment of €1.90 per patient. The sensitivity analysis showed uncertainty, as the main drivers can alter potential cost savings. The scenario analysis indicated a saving of €1,405 per patient, with a reduction of 1.5 days in the ICU (14.8 days vs 12.8 days), and a reduction of 22.7% (18.1-27.2%) in mechanical ventilation duration. The associated sensitivity analysis was shown to be robust in all parameters. Procalcitonin-guided antibiotic stewardship programs are associated with clinical benefits that positively influence antimicrobial resistance in Belgium. A small investment per patient to implement procalcitonin testing may lead to considerable cost savings.


Asunto(s)
Programas de Optimización del Uso de los Antimicrobianos , Sepsis , Humanos , Polipéptido alfa Relacionado con Calcitonina/uso terapéutico , Bélgica , Nivel de Atención , Biomarcadores , Sepsis/tratamiento farmacológico , Unidades de Cuidados Intensivos , Antibacterianos/uso terapéutico
14.
Front Med (Lausanne) ; 10: 1218462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859856

RESUMEN

Background: Alterations in skin blood flow is a marker of inadequate tissue perfusion in critically ill patients after initial resuscitation. The effects of red blood cell transfusions (RBCT) on skin perfusion are not described in this setting. We evaluated the effects of red blood cell transfusions on skin tissue perfusion in critically ill patients without acute bleeding after initial resuscitation. Methods: A prospective observational study included 175 non-bleeding adult patients after fluid resuscitation requiring red blood cell transfusions. Using laser Doppler, we measured finger skin blood flow (SBF) at skin basal temperature (SBFBT), together with mean arterial pressure (MAP), heart rate (HR), hemoglobin (Hb), central venous pressure (CVP), lactate, and central or mixed venous oxygen saturation before and 1 h after RBCT. SBF responders were those with a 20% increase in SBFBT after RBCT. Results: Overall, SBFBT did not significantly change after RBCT [from 79.8 (4.3-479.4) to 83.4 (4.9-561.6); p = 0.67]. A relative increase equal to or more than 20% in SBFBT after RBCT (SBF responders) was observed in 77/175 of RBCT (44%). SBF responders had significantly lower SBFBT [41.3 (4.3-279.3) vs. 136.3 (6.5-479.4) perfusion units; p < 0.01], mixed or central venous oxygen saturation (62.5 ± 9.2 vs. 67.3% ± 12.0%; p < 0.01) and CVP (8.3 ± 5.1 vs. 10.3 ± 5.6 mmHg; p = 0.03) at baseline than non-responders. SBFBT increased in responders [from 41.3 (4.3-279.3) to 93.1 (9.8-561.6) perfusion units; p < 0.01], and decreased in the non-responders [from 136.3 (6.5-479.4) to 80.0 (4.9-540.8) perfusion units; p < 0.01] after RBCT. Pre-transfusion SBFBT was independently associated with a 20% increase in SBFBT after RBCT. Baseline SBFBT had an area under receiver operator characteristic of 0.73 (95% CI, 0.68-0.83) to predict SBFBT increase; A SBFBT of 73.0 perfusion units (PU) had a sensitivity of 71.4% and a specificity of 70.4% to predict SBFBT increase after RBCT. No significant differences in SBFBT were observed after RBCT in different subgroup analyses. Conclusion: The skin blood flow is globally unaltered by red blood cell transfusions in non-bleeding critically ill patients after initial resuscitation. However, a lower SBFBT at baseline was associated with a relative increase in skin tissue perfusion after RBCT.

16.
World J Emerg Surg ; 18(1): 41, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37480129

RESUMEN

Intra-abdominal infections (IAI) are among the most common global healthcare challenges and they are usually precipitated by disruption to the gastrointestinal (GI) tract. Their successful management typically requires intensive resource utilization, and despite the best therapies, morbidity and mortality remain high. One of the main issues required to appropriately treat IAI that differs from the other etiologies of sepsis is the frequent requirement to provide physical source control. Fortunately, dramatic advances have been made in this aspect of treatment. Historically, source control was left to surgeons only. With new technologies non-surgical less invasive interventional procedures have been introduced. Alternatively, in addition to formal surgery open abdomen techniques have long been proposed as aiding source control in severe intra-abdominal sepsis. It is ironic that while a lack or even delay regarding source control clearly associates with death, it is a concept that remains poorly described. For example, no conclusive definition of source control technique or even adequacy has been universally accepted. Practically, source control involves a complex definition encompassing several factors including the causative event, source of infection bacteria, local bacterial flora, patient condition, and his/her eventual comorbidities. With greater understanding of the systemic pathobiology of sepsis and the profound implications of the human microbiome, adequate source control is no longer only a surgical issue but one that requires a multidisciplinary, multimodality approach. Thus, while any breach in the GI tract must be controlled, source control should also attempt to control the generation and propagation of the systemic biomediators and dysbiotic influences on the microbiome that perpetuate multi-system organ failure and death. Given these increased complexities, the present paper represents the current opinions and recommendations for future research of the World Society of Emergency Surgery, of the Global Alliance for Infections in Surgery of Surgical Infection Society Europe and Surgical Infection Society America regarding the concepts and operational adequacy of source control in intra-abdominal infections.


Asunto(s)
Cavidad Abdominal , Infecciones Intraabdominales , Cirujanos , Femenino , Humanos , Masculino
17.
BMC Anesthesiol ; 23(1): 249, 2023 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-37481588

RESUMEN

BACKGROUND: In patients undergoing high-risk surgery, it is recommended to titrate fluid administration using stroke volume or a dynamic variable of fluid responsiveness (FR). However, this strategy usually requires the use of a hemodynamic monitor and/or an arterial catheter. Recently, it has been shown that variations of central venous pressure (ΔCVP) during an alveolar recruitment maneuver (ARM) can predict FR and that there is a correlation between CVP and peripheral venous pressure (PVP). This prospective study tested the hypothesis that variations of PVP (ΔPVP) induced by an ARM could predict FR. METHODS: We studied 60 consecutive patients scheduled for high-risk abdominal surgery, excluding those with preoperative cardiac arrhythmias or right ventricular dysfunction. All patients had a peripheral venous catheter, a central venous catheter and a radial arterial catheter linked to a pulse contour monitoring device. PVP was always measured via an 18-gauge catheter inserted at the antecubital fossa. Then an ARM consisting of a standardized gas insufflation to reach a plateau of 30 cmH2O for 30 s was performed before skin incision. Invasive mean arterial pressure (MAP), pulse pressure, heart rate, CVP, PVP, pulse pressure variation (PPV), and stroke volume index (SVI) were recorded before ARM (T1), at the end of ARM (T2), before volume expansion (T3), and one minute after volume expansion (T4). Receiver-operating curves (ROC) analysis with the corresponding grey zone approach were performed to assess the ability of ∆PVP (index test) to predict FR, defined as an ≥ 10% increase in SVI following the administration of a 4 ml/kg balanced crystalloid solution over 5 min. RESULTS: ∆PVP during ARM predicted FR with an area under the ROC curve of 0.76 (95%CI, 0.63 to 0.86). The optimal threshold determined by the Youden Index was a ∆PVP value of 5 mmHg (95%CI, 4 to 6) with a sensitivity of 66% (95%CI, 47 to 81) and a specificity of 82% (95%CI, 63 to 94). The AUC's for predicting FR were not different between ΔPVP, ΔCVP, and PPV. CONCLUSION: During high-risk abdominal surgery, ∆PVP induced by an ARM can moderately predict FR. Nevertheless, other hemodynamic variables did not perform better.


Asunto(s)
Catéteres de Permanencia , Humanos , Estudios Prospectivos , Presión Venosa , Presión Sanguínea , Presión Venosa Central
18.
Crit Care ; 27(1): 279, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430324
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...