Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 238(3): 475-86, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23748675

RESUMEN

Nitrate reductase (NR) has emerged as a potential NO source in plants. Indeed, the Arabidopsis thaliana NR double-deficient mutant (nia1 nia2) produces low NO and develops abnormal susceptibility to bacterial infection. We have employed quantitative real-time polymerase chain reactions to analyze the effects of NO gas on the expression of defense-related genes in wild-type and nia1 nia2 A. thaliana plants that were inoculated with an avirulent strain of Pseudomonas syringae pv. tomato. The pathogenesis-related gene 1 (PR1) was up-regulated by bacterial infection, and its expression was higher in the wild type than in nia1 nia2. Fumigation with NO attenuated the expression of PR1 and other salicylic acid-related genes in plants that had been inoculated with P. syringae. Nevertheless, NO inhibited the most intense bacterial growth and disease symptoms in nia1 nia2 leaves. The NO fumigation also directly modulated lignin biosynthesis-related gene expression (CAD1) and parts of the auxin (TIR1, ILL1, GH3) and ethylene (ACCS7) pathways, among other defense-related genes, and their modulation was more intense in the NR-deficient mutant. Pathogen inoculation induced delayed but intense H2O2 production in mutant leaves in comparison with the wild type. Hydrogen peroxide potentiated the microbicidal effects of NO against bacterial cultures. These results suggest that NO has a direct microbicidal effect in combination with H2O2 to allow for the attenuation of the SA-mediated defense response, thereby reducing the energy expenditure associated with defense-related gene transcription. Overall, these results highlight the importance of NR-dependent NO production in the establishment of disease resistance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/microbiología , Nitrato-Reductasa/metabolismo , Óxido Nítrico/metabolismo , Pseudomonas syringae/patogenicidad , Proteínas de Arabidopsis/genética , Peróxido de Hidrógeno/metabolismo , Nitrato-Reductasa/genética
2.
BMC Evol Biol ; 10: 341, 2010 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-21054875

RESUMEN

BACKGROUND: The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms. RESULTS: In this work, we used a comparative genomic approach to obtain new insights into the evolution of the xyloglucan-related enzymatic machinery in green plants. Detailed phylogenetic analyses were done for enzymes involved in xyloglucan synthesis (xyloglucan transglycosylase/hydrolase, α-xylosidase, ß-galactosidase, ß-glucosidase and α-fucosidase) and mobilization/degradation (ß-(1→4)-glucan synthase, α-fucosyltransferases, ß-galactosyltransferases and α-xylosyl transferase) based on 12 fully sequenced genomes and expressed sequence tags from 29 species of green plants. Evidence from Chlorophyta and Streptophyta green algae indicated that part of the Embryophyta xyloglucan-related machinery evolved in an aquatic environment, before land colonization. Streptophyte algae have at least three enzymes of the xyloglucan machinery: xyloglucan transglycosylase/hydrolase, ß-(1→4)-glucan synthase from the cellulose synthase-like C family and α-xylosidase that is also present in chlorophytes. Interestingly, gymnosperm sequences orthologs to xyloglucan transglycosylase/hydrolases with exclusively hydrolytic activity were also detected, suggesting that such activity must have emerged within the last common ancestor of spermatophytes. There was a positive correlation between the numbers of founder genes within each gene family and the complexity of the plant cell wall. CONCLUSIONS: Our data support the idea that a primordial xyloglucan-like polymer emerged in streptophyte algae as a pre-adaptation that allowed plants to subsequently colonize terrestrial habitats. Our results also provide additional evidence that charophycean algae and land plants are sister groups.


Asunto(s)
Evolución Molecular , Glucanos/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Viridiplantae/metabolismo , Xilanos/metabolismo , Viridiplantae/enzimología
3.
BMC Genomics ; 10: 120, 2009 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-19302712

RESUMEN

BACKGROUND: Sucrose content is a highly desirable trait in sugarcane as the worldwide demand for cost-effective biofuels surges. Sugarcane cultivars differ in their capacity to accumulate sucrose and breeding programs routinely perform crosses to identify genotypes able to produce more sucrose. Sucrose content in the mature internodes reach around 20% of the culms dry weight. Genotypes in the populations reflect their genetic program and may display contrasting growth, development, and physiology, all of which affect carbohydrate metabolism. Few studies have profiled gene expression related to sugarcane's sugar content. The identification of signal transduction components and transcription factors that might regulate sugar accumulation is highly desirable if we are to improve this characteristic of sugarcane plants. RESULTS: We have evaluated thirty genotypes that have different Brix (sugar) levels and identified genes differentially expressed in internodes using cDNA microarrays. These genes were compared to existing gene expression data for sugarcane plants subjected to diverse stress and hormone treatments. The comparisons revealed a strong overlap between the drought and sucrose-content datasets and a limited overlap with ABA signaling. Genes associated with sucrose content were extensively validated by qRT-PCR, which highlighted several protein kinases and transcription factors that are likely to be regulators of sucrose accumulation. The data also indicate that aquaporins, as well as lignin biosynthesis and cell wall metabolism genes, are strongly related to sucrose accumulation. Moreover, sucrose-associated genes were shown to be directly responsive to short term sucrose stimuli, confirming their role in sugar-related pathways. CONCLUSION: Gene expression analysis of sugarcane populations contrasting for sucrose content indicated a possible overlap with drought and cell wall metabolism processes and suggested signaling and transcriptional regulators to be used as molecular markers in breeding programs. Transgenic research is necessary to further clarify the role of the genes and define targets useful for sugarcane improvement programs based on transgenic plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Saccharum/química , Saccharum/genética , Sacarosa/análisis , Agricultura , Perfilación de la Expresión Génica , Genotipo , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...